

b-tu Brandenburgische

Technische Universität Cottbus

Mathematical modelling of natural gas markets

BTU Cottbus & Gas Union 13.02.2015

legor Riepin

Lehrstuhl Energiewirtschaft BTU Cottbus-Senftenberg Telefon: 0355/ 69 4043 Raum: LG 3E - R 2.22

Brandenburgische Technische Universität Cottbus

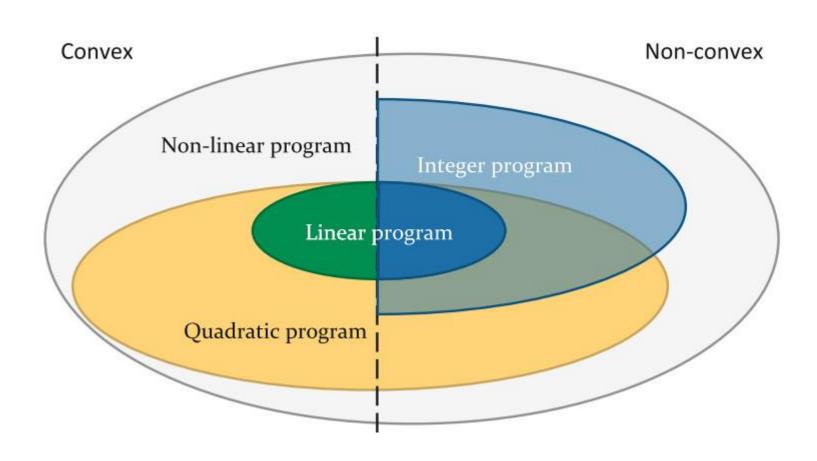
1. Introduction to MCP formulations

2. Model

- 2.1 Network representation
- 2.2 Structure
- 2.3 Set of assumptions

3. Mathematical description

- 2.1 Objective functions & Constraints
- 2.2 Market clearing
- 2.3 Demand function
- 4. GAMS


5. Discussion

- MCP (mixed complementarity programming) is a common modelling approach to describe various energy markets around the world.
- Complementarity models generalize linear programs (LP), quadratic programs (QP) and (convex) nonlinear programs (NLPs)

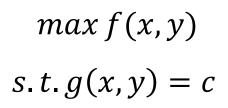
Introduction to MCP formulations: types of optimization problems

Source: [4]

- MCP (mixed complementarity programming) is a common modelling approach to describe various energy markets around the world.
- Complementarity models generalize linear programs (LP), quadratic programs (QP) and (convex) nonlinear programs (NLPs)
- Complementarity problems are appropriate for modelling the regulated/deregulated, perfect/imperfect competition that characterizes today's energy markets

Method of Lagrange multipliers: problem definition

x

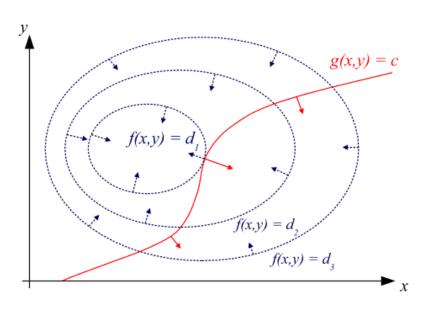

g(x,y) = c

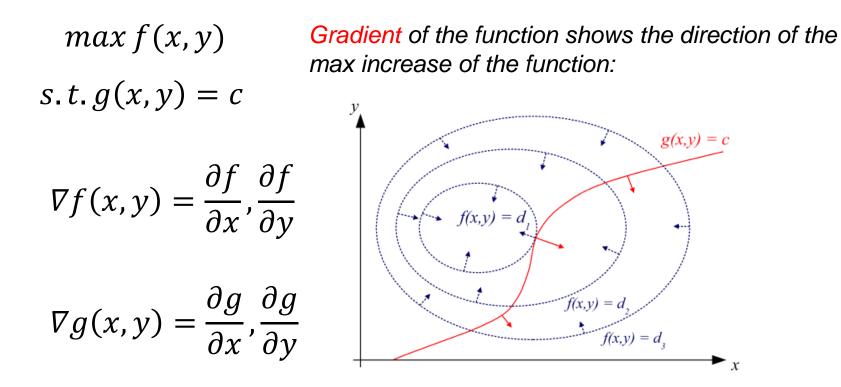
f(x,y) = d

f(x,y) = d

 $f(x,y) = d_{x}$

In mathematical optimization, the method of Lagrange multipliers <u>is a</u> <u>strategy for finding the local maxima and minima of a function subject to</u> <u>equality constraints:</u> f(x,y)

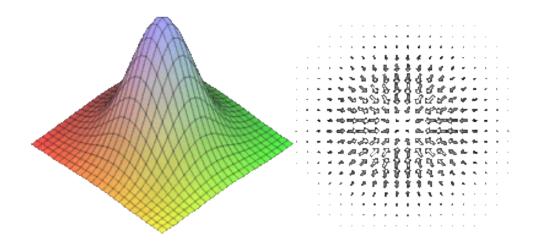

Where f(x,y) – objective function g(x,y) - constraint


In mathematical optimization, the method of Lagrange multipliers <u>is a</u> <u>strategy for finding the local maxima and minima of a function subject to</u> <u>equality constraints:</u>

max f(x, y)
s.t.g(x, y) = c

Key point: 2 curves are tangent at the same point -> i.e. they have the same slope

In mathematical optimization, the method of Lagrange multipliers <u>is a</u> <u>strategy for finding the local maxima and minima of a function subject to</u> <u>equality constraints:</u>



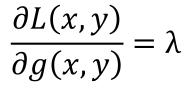
In mathematics, the gradient is a generalization of the usual concept of derivative of a function in one dimension to a function in several dimensions.

✓ Gradient points in the <u>direction of the greatest rate of increase</u> of the function and its <u>magnitude is the slope of the graph</u> in that direction

$$\nabla f = \frac{\partial f}{\partial x_1} \mathbf{e}_1 + \dots + \frac{\partial f}{\partial x_n} \mathbf{e}_n$$

where the ei are the orthogonal unit vectors pointing in the coordinate directions.

In mathematical optimization, the method of Lagrange multipliers *is a* strategy for finding the local maxima and minima of a function subject to equality constraints:


max f(x, y) s. t. g(x, y) = c $\nabla f(x, y) = \lambda \cdot \nabla g(x, y)$ $If 2 vectors are orthogonal to the same slope, it has to be the case that they are parallel:
<math display="block">\nabla f(x, y) = \lambda \cdot \nabla g(x, y)$

x

In economics the optimal profit to a player is calculated subject to a constrained space of actions, where a Lagrange multiplier is the change in the optimal value of the objective function (profit) due to the relaxation of a given constraint

$$\nabla f(x,y) = \lambda \cdot \nabla g(x,y)$$

in such a context λ is the <u>marginal cost</u> of the constraint, and is referred as the <u>shadow price</u>

- ✓ The Karush–Kuhn–Tucker (KKT) conditions <u>are first order necessary</u> <u>conditions for a solution in nonlinear programming to be optimal</u>, provided that some regularity conditions are satisfied.
- ✓ Allowing inequality constraints, the KKT approach applied to nonlinear programming generalizes the method of Lagrange multipliers, which allows only equality constraints.

(1.1)

Let us consider the problem:

 $\min F(x)$

s.t.
$$g_i(x) \le 0$$
 (λ_i) $\forall i = 1, ... n$ (1.2)

$$h_i(x) = 0 \quad (\mu_i) \qquad \forall j = 1, ... m$$
 (1.3)

> For this problem, the KKT conditions are:

$$\nabla f(x) + \sum_{i=1}^{n} \lambda_i \nabla g_i(x) + \sum_{j=1}^{n} \mu_i \nabla h_j(x) = 0$$
(1.4)

$$0 \ge g_i(x) \perp \lambda_i \ge 0 \qquad \qquad \forall i = 1, \dots n \qquad (1.5)$$

$$0 = h_i(x) \qquad \mu_j \text{ free} \qquad \forall j = 1, \dots m \qquad (1.6)$$

The solution stationarity is ensured by the equation (1.4). Equations (1.5) and (1.6) ensure complementarity and feasibility of a solution Source: [1]

BTU Cottbus – Chair of Energy Economics

Let us provide the following illustration of such a mathematical structure based on a simple problem faced by a gas producer:

$$\max_{q \ge 0} \Pi = qp(q) - C(q) \tag{1.7}$$

$$s.t.q \leq Q \tag{1.8}$$

where:

q - gas sales p(q) - affine inverse demand function C(q) – production cost function

The KKT conditions for this problem are:

$$0 \le q \perp p + \left(\frac{\partial p}{\partial q}q\right) - C'(q) + \lambda \le 0 \tag{1.9}$$

$$0 \le \lambda \perp (q - Q) \le 0 \tag{1.10}$$

Equation (1.9) is a short way to express the following complementarity problem:

$$0 \le q$$
$$p - C'(q) + \lambda \le 0$$
$$q(p - C'(q) + \lambda) = 0$$

where symbol \perp states orthogonality

- ✓ The complementarity model of a market is done by combining the KKTs of all market players with market clearing conditions.
- ✓ Numerical problems in MCP format can be efficiently solved with PATH solver by using the GAMS software.
- ✓ The General Algebraic Modelling System (GAMS) is a modeling system used for mathematical programming and optimization. GAMS is designed to model complex and large-scale problems, such as: LP, NLP, MIP, MINLP, etc.

Brandenburgische Technische Universität Cottbus

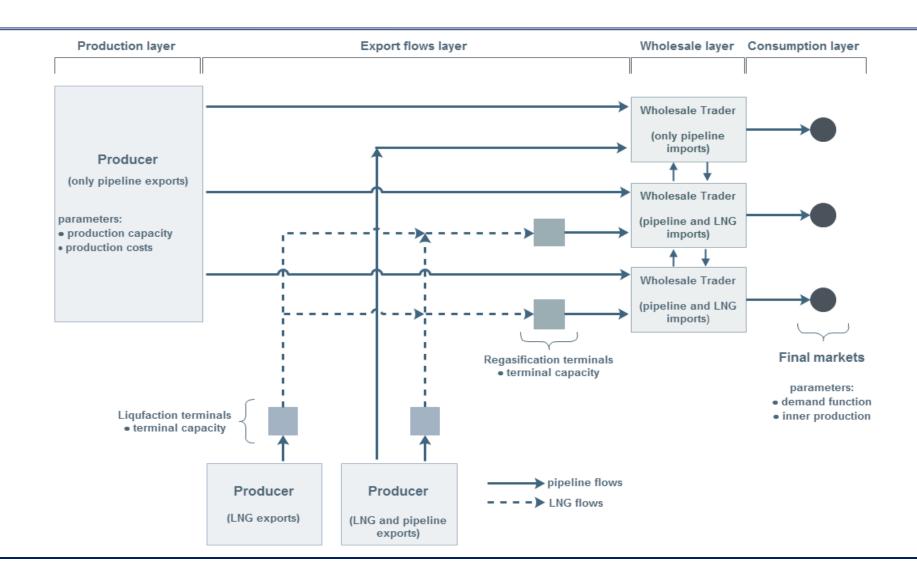
1. Introduction to MCP formulations

2. Model

- 2.1 Network representation
- 2.2 Structure
- 2.3 Set of assumptions

3. Mathematical description

- 2.1 Objective functions & Constraints
- 2.2 Market clearing
- 2.3 Demand function
- 4. GAMS


5. Discussion

- ✓ Market participants as producers, wholesale traders, final consumers, LNG terminals are represented in the model as nodes (*N*)
- ✓ There is a list of activities possible to happen in certain node accordingly to its geographical location: production, export, import, consumption
- ✓ All nodes in the model are interconnected through arcs. Data for the existing European gas infrastructure was taken from ENTSOG. Arcs have exogenously assigned capacity $cap_{n,m}^{pipe}$ in bcm/a
- ✓ Pipeline interconnections are modelled only by one-directional arcs, although transmission pipelines theoretically could be bidirectional. Gas flows which have to be feasible in two directions are achieved via two one-directional arcs
- \checkmark The model neglects gas friction and pressure drops in the network

Structure

b-tu Brandenburgische

Technische Universität Cottbus

BTU Cottbus – Chair of Energy Economics

Cottbus

- ✓ No certain gas flow destination, which gives each consumer the possibility to choose own supplier independently
- ✓ Gas producers have full information about the demand in each node and adjust their production amount optimizing their profits
- The model operates with an assumption of one wholesale trader located in each country and the absence of vertical integration between companies on subsequent layers
- ✓ The model is based on a static modelling approach. Thus, we exogenously assign investments in natural gas infrastructure (such as new pipeline or LNG capacity which enters the model in expected year of completion)

Brandenburgische Technische Universität Cottbus

1. Introduction to MCP formulations

2. Model

- 2.1 Network representation
- 2.2 Structure
- 2.3 Set of assumptions

3. Mathematical description

- 2.1 Objective functions & Constraints
- 2.2 Market clearing
- 2.3 Demand function
- 4. GAMS

5. Discussion

- ✓ Producer's objective is to maximize its profit $(\prod_{n=1}^{prod})$ by deciding the quantity of gas to be produced (pr)
- ✓ Its profit results from selling the gas produced at the price $(PtoE_{p,n})$ minus his production costs $(PrC_{p,n})$ which is a linear function from the quantity of gas produced

$$\max_{pr_{p,n}} \Pi_{n}^{prod} = (pr_{p,n} \cdot PtoE_{p,n}) - PrC_{p,n}(pr_{p,n}), \quad \forall p, n$$
profit production costs (1)

where (1) represents the producer's profit function

Each producer operates under the production capacity constraint:

$$cap_{n}^{prod} \geq \sum_{p} pr_{p,n} \quad (\lambda_{n}^{prod}), \quad \forall n$$

$$pr_{p,n} \geq 0, \quad \forall p,n$$
(1.2)
(1.3)

where equation (1.2) is a production constraint and (1.3) ensures that production variable takes only positive values

✓ Following the common approach of obtaining a complementarity model, the problem has to be converted into a minimization problem. The signs of the objective function will be inverted and constraints restructured to the following form:

$$\begin{split} \min_{pr_{p,n}} -\Pi_n^{prod} &= -pr_{p,n} \cdot PtoE_{p,n} + PrC_{p,n}(pr_{p,n}), \quad \forall p,n \end{split} \tag{1.4}$$
$$subject to \\ cap_n^{prod} - \sum_p pr_{p,n} \geq 0 \quad (\lambda_n^{prod}), \quad \forall n \qquad (1.5)$$
$$pr_{p,n} \geq 0, \quad \forall p,n \qquad (1.6)$$

Mathematical description: Producer

✓ By deriving the first-order conditions (FOCs) we obtain Karush-Kuhn-Tucker conditions for this problem:

$$\forall p, n: \quad 0 \le pr_{p,n} \perp (-PtoE_{p,n} + \frac{\partial PrC_{p,n}(pr_{p,n})}{\partial pr_{p,n}} + \lambda_n^{prod}) \ge 0 \quad (1.6)$$

$$\forall n: \quad 0 \le \lambda_n^{prod} \perp (cap_n^{prod} - \sum_p pr_{p,n}) \ge 0 \quad (1.7)$$

Linear cost function ensures convexity requirement of KKT conditions to find an optimal solution for the given problem

- ✓ The objective of an exporter is to maximize its profit $(\Pi_{n,m}^{exp})$ from gas sales to the market *m* at the border price (bp_m)
- ✓ Natural gas has also to be transported to a node *m*; $(tfee_{n,m})$ is a transport fee paid by an exporter to use arc(s) between *n* and *m* nodes

$$\max_{\substack{exp \ p,n \to m}} \Pi_{n,m}^{exp} = (exp_{p,n \to m} \cdot bp_m) - (exp_{p,n \to m} \cdot PtoE_{p,n}) - \sum_{n \to m \in N} tfee_{n \to m} \cdot expfl_{p,n \to m}$$

$$\max_{expfl_{p,n \to m}} gas \text{ sales} \quad purchase \text{ expenses} \quad transportation \text{ expenses}} \quad transportation \text{ expenses}} \quad (2.1)$$

where equation (2.1) is a represents the profit function of an exporter

BTU Cottbus – Chair of Energy Economics

Mathematical description: Exporter

Subject to:

$$\begin{bmatrix} \sum_{m \neq n} exp_{p,n \to m} - \sum_{m \neq n} expfl_{p,n \to m} \end{bmatrix} + \begin{bmatrix} \sum_{m \neq n} expfl_{p,m \to n} - \sum_{m \neq n} exp_{p,m \to n} \end{bmatrix} = 0 \ (\varphi_{p,n}^{exp}), \forall p, n \qquad (2.2)$$
$$exp_{p,n \to m} \ge 0, \quad \forall p, n, m \qquad (2.3)$$
$$expfl_{p,n \to m} \ge 0, \quad \forall p, n, m \qquad (2.4)$$

Equation (2.2) is a constraint which ensures flow and activity conservation. Literally it means that trade gas volumes have to be equal to the physical gas flow.

Thus, for an exporter P placed in export node *n*, <u>all sales out of node *n*</u> have to be equal to the <u>physical flows out of this node</u>:

$$\left[\sum_{m \neq n} exp_{p,n \to m} - \sum_{m \neq n} expfl_{p,n \to m}\right] = 0, \qquad (\varphi_{p,n}^{exp}) \qquad \forall p, n, m$$

In case we consider *n* node as an import node, all <u>import trades from other nodes</u> to node *n* have to be equal to all <u>physical gas inflows</u>:

$$\left[\sum_{m \neq n} expfl_{p,m \to n} - \sum_{m \neq n} exp_{p,m \to n}\right] = 0, \qquad (\varphi_{p,m}^{exp}) \qquad \forall p, n, m$$

Note that each node for some set of arcs can be viewed as import or export node

$\checkmark\,$ Deriving KKTs from the corresponding minimization problem we obtain:

$$\forall p, n, m: \quad 0 \le exp_{p,n \to m} \perp (-bp_m + PtoE_{p,n} + \varphi_{p,n}^{exp} - \varphi_{p,m}^{exp}) \ge 0 \tag{2.5}$$

$$\forall p, n, m: \quad 0 \le expfl_{p,m \to n} \perp (tfee_{n \to m} - \varphi_{p,n}^{exp} + \varphi_{p,m}^{exp}) \ge 0 \tag{2.6}$$

$$\forall p,n: \qquad \left[\sum_{m\neq n} exp_{p,n\to m} - \sum_{m\neq n} expfl_{p,n\to m}\right] + \left[\sum_{m\neq n} expfl_{p,m\to n} - \sum_{m\neq n} exp_{p,m\to n}\right] = 0 \quad (2.7)$$

- ✓ The objective of each trader ($w \in W$) is to maximize its profit from importing gas from upstream players at (bp_m) and re-selling it to the final market *C*
- Country of destination can be of the same node where a trader is placed (sales for inner consumption) or a different one (wholesale gas trade).
- ✓ In case of sales to other consumption nodes trader *w* has to pay also transport fee $(tfee_{n,m})$ for using an arc between *n* and *m* nodes.

$$\max_{\substack{whs_{w,n \to m} \\ whfl_{w,n \to m}}} \Pi_{n,m}^{ws} = (whs_{w,n \to m} \cdot pFC_n) - (whs_{w,n \to m} \cdot bp_m) - \sum_{n \to m \in N} tfee_{n \to m} \cdot whfl_{w,n \to m}$$

$$gas sales \qquad purchase expenses \qquad transportation expenses$$

(3.1)

where equation (3.1) is a trader's profit function

Mathematical description: Wholesaler

Subject to:

$$\left[\sum_{m \neq n} whs_{w,n \to m} - \sum_{m \neq n} whfl_{w,n \to m}\right] = 0, \qquad (\varphi_{w,n}^{ws}) \qquad \forall w, n, m$$
(3.2)

$$\left[\sum_{m\neq n} whfl_{w,m\to n} - \sum_{m\neq n} whs_{w,m\to n}\right] = 0, \quad (\varphi_{w,m}^{WS}) \qquad \forall w, n, m$$
(3.3)

$$whs_{w,n \to m} \ge 0, \quad \forall w, n, m$$
 (3.4)

$$whfl_{w,n\to m} \ge 0, \quad \forall w, n, m$$
 (3.5)

Equations (3.2-3) are constraints which ensure flow and activity conservation.

BTU Cottbus – Chair of Energy Economics

✓ Deriving KKTs from the corresponding minimization problem we obtain:

$$\forall w, n, m: \quad 0 \le whs_{w,n \to m} \perp (-pFC_n + bp_m + \varphi_{w,n}^{ws} - \varphi_{w,m}^{ws}) \ge 0 \tag{3.6}$$

$$\forall w, n, m: \quad 0 \le whfl_{w,n \to m} \perp (tfee_{n \to m} - \varphi_{w,n}^{ws} + \varphi_{w,m}^{ws}) \ge 0 \tag{3.7}$$

$$\forall w, n, m: \quad \left[\sum_{m \neq n} whs_{w, n \to m} - \sum_{m \neq n} whfl_{w, n \to m}\right] + \left[\sum_{m \neq n} whfl_{w, m \to n} - \sum_{m \neq n} whs_{w, m \to n}\right] = 0 \quad (3.8)$$

- ✓ Transmission system operator (TSO) is responsible for allocating network capacity to market players who participate in gas import/export/transit activities
- ✓ TSO uses capacity allocation mechanism which assigns additional network capacity to the player with the highest marginal willingness-to-pay for it, i.e. access to pipeline infrastructure is granted according to those players who value capacity the most

It was shown by Cremer et al. (2003) that modelling of profit maximizing competitive TSO gives the same results as social welfare optimization

Subject to:

$$cap_{n \to m}^{pipe} \ge totfl_{n \to m} \quad (\lambda_{n \to m}^{pipe}), \quad \forall n, m$$

$$totfl_{n \to m} \ge 0, \quad \forall n, m$$

$$(4.2)$$

where *totfl* represents total physical gas flow between two nodes. It equals to a sum of all export and wholesale flows between these nodes:

$$\sum_{m \neq n} expfl_{p,n \to m} + \sum_{m \neq n} whfl_{w,n \to m} = totfl_{n \to m} \quad (tfee_{n \to m} free) \quad \forall n,m \quad (4.4)$$

Where equation (4.1) is the objective function. Constraint (4.2) ensures that the total physical gas flow through the arc (n - m) will never overcome its capacity.

- ✓ Transmission costs are linear on the subject of distance over similar terrain [6]. Hence, transmission costs $TC_{n \to m}(totfl_{n \to m})$ are assumed to be the product of distances between nodes and average value of LRMC of gas transmission.
- ✓ LRMC includes differentiation on offshore/onshore pipeline and Europe grid/FSU grid. Distances between nodes are assigned exogenously and equal to distances calculated between the centers of the countries relevant to nodes
- ✓ The KKTs from the corresponding minimization problem are:

$$\forall n,m: \quad 0 \le totfl_{n \to m} \perp \left(-tfee_{n \to m} + \frac{\partial TC_{n \to m}(totfl_{n \to m})}{\partial totfl_{n \to m}} + \lambda_{n \to m}^{pipe}\right) \ge 0 \quad (4.5)$$

$$\forall w, n, m: \quad 0 \le \lambda_{n \to m}^{pipe} \perp (cap_{n \to m}^{pipe} - totfl_{n \to m}) \ge 0$$

$$(4.6)$$

- **b-tu** Brandenburgische Technische Universität Cottbus
- ✓ The market clearing equation for the upstream level ensures that the whole quantity of gas produced by producer will be purchased by exporter and sold to the following market level:

$$pr_{p,n} = \sum_{m \neq n} exp_{p,n \to m} \quad (PtoE_{p,n} \ free), \quad \forall n,m \tag{5.1}$$

✓ Second clearing condition is satisfied if the entire quantity of gas imported by downstream players equals to the entire gas quantity traded on a wholesale market:

$$\sum_{n} \sum_{p} exp_{p,n \to m} = \sum_{w} \sum_{n} whs_{w,n \to m} \quad (bp_m \ free), \quad \forall n,m$$
(5.2)

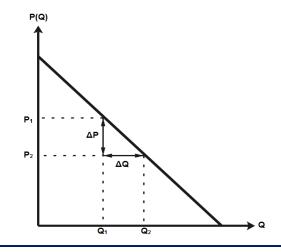
 \checkmark Equation (4.4) was used to define the total physical gas flow which also serves as a market clearing condition between TSO and exporters/traders:

$$\sum_{m \neq n} expfl_{p,n \to m} + \sum_{m \neq n} whfl_{w,n \to m} = totfl_{n \to m} \quad (tfee_{n \to m} \quad free), \quad \forall n,m \quad (5.3)$$

 \checkmark The final market clearing constraint guarantees that the price for final consumers matches the inverse demand function at the equilibrium point:

$$pFC_n - \left(a_n + b_n \cdot \sum_{m \neq n} \sum_{w} whs_{w,m \to n}\right) = 0, \quad \forall n$$
(5.4)

.



The affine inverse demand function is commonly expressed in the following way:

$$P(Q) = a + b \cdot Q \tag{6.1}$$

where P(Q) represents the price of a good as a function of quantity demanded (Q). The constant *b* represents a slope of the function and the constant *a* is an intersection point with the vertical axis.

Inverse demand function is plotted on a coordinate system with the price on the vertical axis and quantity on the horizontal axis:

Estimation of inverse demand function is done around the reference point (pref, Qref):

$$P^{ref} = a + b \cdot Q^{ref} \tag{6.2}$$

where Q^{ref} is the total consumption in the node *n*. It aggregates consumption quantities of all the final consumers located in that node.

Using definition of the price elasticity of demand (PED), for the demand function the following definitions can be written (here indices are omitted for the sake of simplicity):

$$Q = -\frac{a}{b} + \frac{1}{b} \cdot p; \qquad \varepsilon = -\frac{\partial Q}{\partial p} \cdot \frac{p}{Q} = \frac{1}{b} \cdot \frac{p}{Q}; \qquad (6.3)$$
$$b = \frac{p}{Q} \cdot \frac{1}{\varepsilon}; \qquad a = p - b \cdot Q;$$

Technische Universität Cottbus

Applying results obtained in (6.3) into (1.1) gives the following inverse demand curve:

$$p = P^{ref} - b \cdot Q^{ref} + \frac{P^{ref}}{Q^{ref}} \cdot \frac{1}{\varepsilon} \cdot Q$$

$$p = P^{ref}(1 - \frac{1}{\varepsilon}) + \frac{P^{ref}}{Q^{ref}} \cdot \frac{1}{\varepsilon} \cdot Q$$

$$pFC_n - \left(a_n + b_n \cdot \sum_{m \neq n} \sum_{w} whs_{w,m \to n}\right) = 0, \quad \forall n$$

Brandenburgische Technische Universität Cottbus

1. Introduction to MCP formulations

2. Model

- 2.1 Network representation
- 2.2 Structure
- 2.3 Set of assumptions

3. Mathematical description

- 2.1 Objective functions & Constraints
- 2.2 Market clearing
- 2.3 Demand function

4. GAMS

5. Further work & Discussion

Brandenburgische Technische Universität Cottbus

Countries included in the model and major open data sources:

Ехроі	rting countrie	es	Importing countries						
Type of connection	pipeline connection	LNG liquefaction terminals	Type of connection	pipeline connection	LNG regasification terminals				
Russia	~	(🗸)	Germany	~	(🗸)				
Norway	~	(🗸)	France	~	~				
Netherlands	~	(~)	Italy	~	~				
Algeria	~	~	Poland	~					
Libya	~	(🗸)	Czech Rep.	~					
Eqypt		•	Austria	~					
Nigeria		<	Slovakia	~					
Qatar		~	Belarus	~					
	existing c	onnection	Ukraine	~					
·	included in	the model	Belgium	~	~				
	planned	possible	Switzerland	~					
(~)	connection or	terminals not	UK	~	~				
	included in	the model	Baltic reg.	~	(🗸)				
М	ajor sources:		Slovenia	~					
<u>http://</u>	/www.entsog.eu	<u>u/</u>	Hungary	~					
<u>http://</u>	www.gie.eu.cor	<u>n/</u>	Romania	~					
http://www.	naturalgaseuro	pe.com/	Balkan reg.	~	(~)				
			Spain/Portugal	~	~				

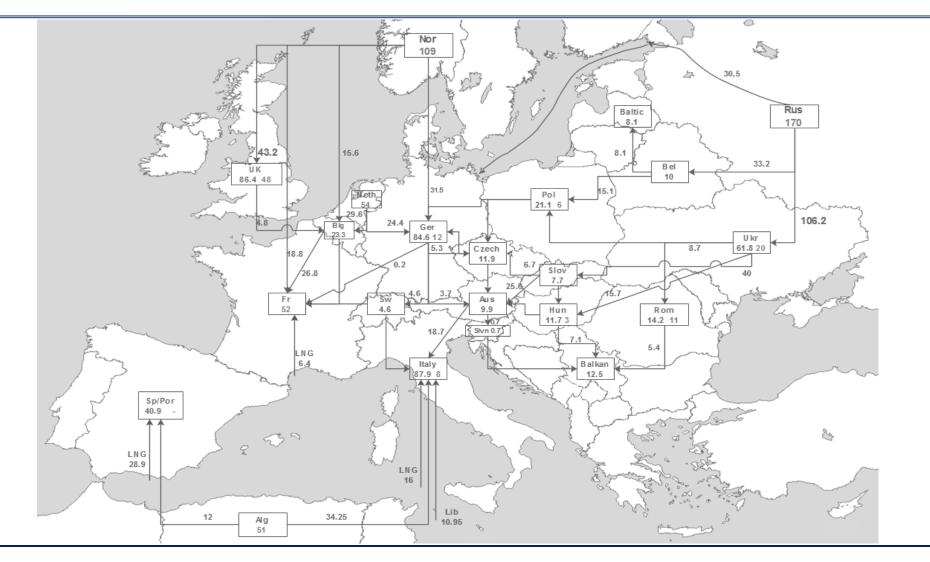
Data->Math->Modelling->Results

b-tu

Brandenburgische Technische Universität Cottbus

Conver	• • • •																						
\Users\Unknown\Dropbox\Code Gas Mar EU HALFYEAR Copy.gms INPUTDATA_H/		s code HA	ALFYEAR ((save co	py)\data	a\INPUT	DATA_H	IALF.gdx														• ×	
y Symbol Type Dim Nr Elem	cap_pipe(*, *)																						-
prod_constr Par 2 46																						1	
prod_costs Par 2 48																							
cap_pipe Par 2 99												Dises in	ex (empty)										
cap_add Par 3 36												Plane inc	ex (empty)										
rans_costs Par 2 99																							
calibr_cons Par 2 108 calibr_price Par 2 108																							
nner_prod Par 2 42	Algliq NigLi	q EgLIQ	QatLIQ	Itreg F	rreg Sp	Preg	Bigreg U	Ikreg tn	Ger tr	Fr tn_lt	tn_Po	I tn_Cz tr	Aus tn_S	ov tn_Bel tn_Ukr	tn_Blg	tn_Sw tr	n_Uk t	tn_Balt tn_Slvn	tn_Hun tn	Rom tn_Balc	tn_SpP	cn_Ger *	-
	Pn_Rus								5,25					42 124,05			-	3,85					1
	pn_Nor							1	5,75	9,35					7,8		23,9						
	pn_Alg 8,5									17,125	5										16		
	pn_Lib									5,475	5												
	pn_Neth							2	8,05						18,05		8,2						
	pn_Eg	1,25																					
	pn_Qat		16																				
		6																					
	Algliq			25		25	25	25			_												
	NigLiq				25	25	25	25															
	EgLIQ				25	25		25			_						_						
	QatLIQ	-		25	25	25	25	25	_		-						_				-		
	Itreg	-		-	_		-		_	4	1				-								
	Frreg		-		_			_	_	6											17.5		
	SpPreg				_				_						0.05						17,5		
	Blgreg Ukreg	-			_	-		-	-		-		-		2,25		12,75						
	tn_Ger	-								9,25	0.	8 21,1	1.85		6 725	9,1	12,15					200	
	tn_Fr	-			-					J,20	0,1	21,1	1,05		0,725	3,575					2,625	200	
	tn_lt				-			-		-			3,1			3,313		0,955			2,020		
	tn_Pol	-					-	1	5,35				3,1		-			0,000					
	tn_Cz				-	-			0,83		0,07	5	3	5,6			-						
	tn_Aus	-			-				9,9	18,5				5,9				1.7	2,1				
	tn_Slov							-			1	20,25											
	- <u>D-1</u>										40.0			47.45				6.2		1			
- Freedom B		eeze defa	aulte	Orderi	na: 1 9	,																,	1
ol search	Decima	Is Sea		oruen	ng. 1 2																		
Next Prev	Sort I M			Next	Pre	ev																	

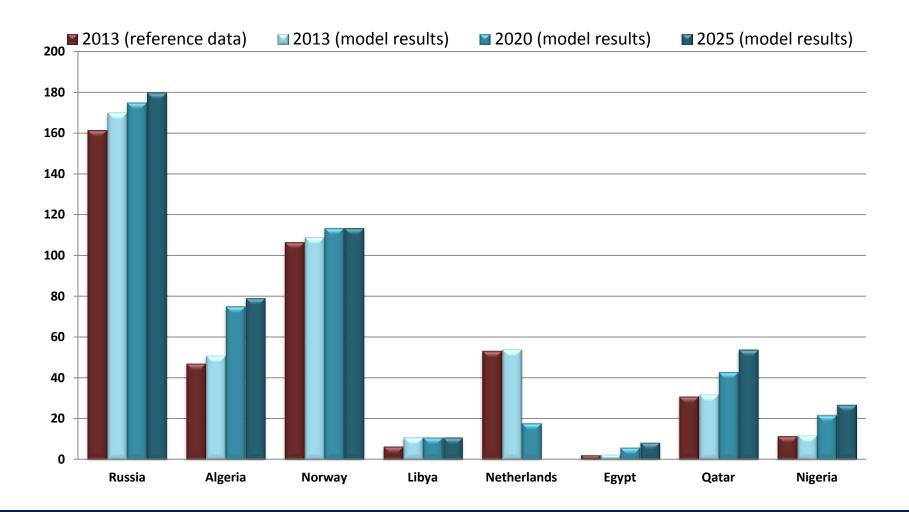
Data->Math->Modelling->Results (GDX)

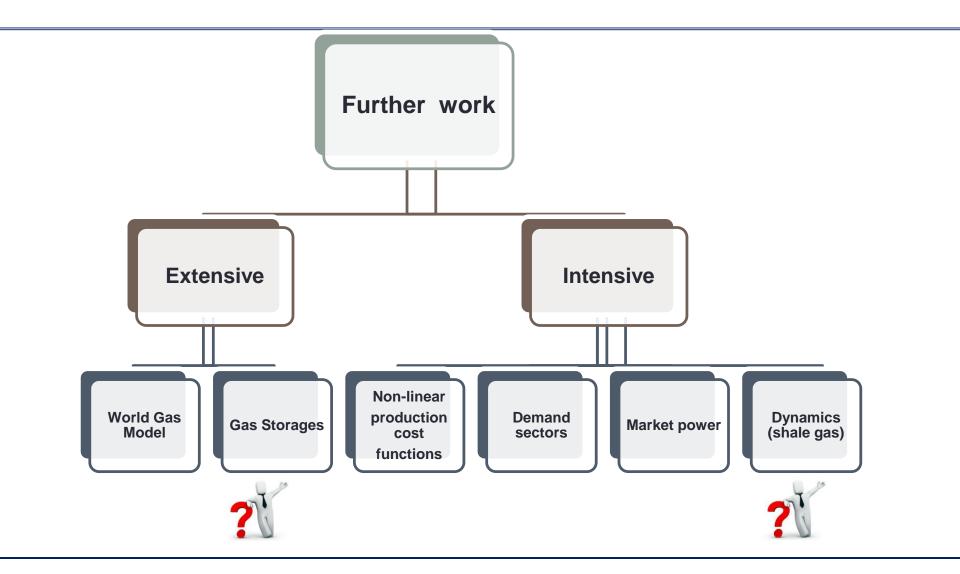

Brandenburgische Technische Universität Cottbus

genetic (Ling)/Mound/Depiction/Code (de Matricicole Martinic Ling)/ Teacher Martinical Unit	
Image: Construction Image: Construction	- 0 X
¹ Clubelline consideration Code Gai Market Code Volume Lais code HAIYVA (sche Copy) resublisation gait ¹ Clubelline code Code Copy) resublisation code ¹ Clubelline code Code Copy) resublisation code ¹ Clubelline code ¹ Clubelline ¹ Clubelline ¹ Clubelline code ¹ Clubelline	T
Pier March Androgongen Pier March Androgongen Simulation Androgongen Simulation Androgongen Simulation Androgongen Simulation Androgongen Simulation Androgongen Simulation Androgongen Simulation Androgongen Simulation Androgongen Simulation Androgongen Simulation Androgongen Simulation Androgongen Simulation Androgongen Simulation Androgongen S	
Entry Symbol Type During the term 1 µr War 3 1.68 2.000 2	
ipr Var 3 1.6% 2 exord, shykela Var 4 88.8% 4 whod, shykela Var 4 30.377 1 washed, shykela Var 3 1.5% 5 whod, shykela Var 4 30.377 1 washed, shykela Var 3 1.5% 7 proce_Pick Var 3 1.5% 9 proce Jorder Var 2 210 10 contarm Var 2 15.260 15.250 15.250 10 contarm Var 2 15.760 15.250 15.250 11 contarm Var 2 15.760 15.250 15.250 12 uhadew_trem Var 2 15.760 15.760 15.760 12 uhadew_trem Var 2 15.760 15.760 15.760 12 uhadew_trem Var 2 15.760 15.760 15.760 12 uhadew_trem Var 1 17.12 17.12 17.12	
 2 sport_spic_vic_vic_ 4 9.888 3 sport_spic_vic_vic_ 4 9.888 4 whoi, gave vic_ 4 9.838 5 whoi, gave vic_ 4 9.3378 5 whoi, gave vic_ 4 9.3378 9 rice, Foc Vic_ 2 202 9 rice, Foc Vic_ 2 202 10 consume Vic_ 2 202 11 shadow_jran Vic_ 2 212 12 shadow_jran Vic_ 2 1128 N No Cee 10.00 1000 1200 2000 2000 2000 11 shadow_jran Vic_ 2 1128 N No Cee 10.00 1000 1200 1000 1200 10000 1000 10	
B Conc Co	
4 whole_show_cwa V 4 93.372 5 whole_show_cwa 30.372 6 10:enitow Vi 3 11:23 7 proc_P Vi 2 212 9 proc_Dord Vi 2 212 10:enstumm Vi 2 212 11:abdow_prov Vi 2 212 11:abdow_prov Vi 2 212 11:abdow_prov Vi 2 212 11:abdow_prov Viii 3 15:26 15:26 15:26 11:abdow_prov Viii 2 212 10.55 15:26 15:26 15:26 11:abdow_prov Viiii 2 212 10.56 15:26 15:26 15:26 15:26 15:26 11:abdow_prov Viiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	
Image: Prob Var 3 12.98 Pripes_PC0 Var 2 212 Prise_pC0 Var 2 212 Di consum Prise_pC0 Var 2 212 I shadow_prod Var 2 212 10.98 1.520 15.20 <td< td=""><td></td></td<>	
Price_Poil Var 3 1.680 9 price_Poil Var 2 212 9 price_Poil Var 2 212 10 consumm Par 2 72 11 shadow_pod Var 2 212 12 shadow_trans Var 3 1.526 15.250 17 shadow_trans Var 3 1.525 15.250 12 shadow_trans Var 3 1.525 15.750 15.750 10, NS 7.49 2.300 2.300 7.800 7.800 10, NS 7.49 7.800 7.800 7.800 10, NS 7.49 7.800 7.800 7.800 10, NS 7.49 1.29.30 2.3900 2.3900 11, NS 1.745 17.425 17.425 17.425 10, NS 7.800 7.800 7.800 10, NS 1.555 15.750 15.750 11, NS 1.745 17.425 17.425	
Image: Border Var 2 212 9 price_ FC Var 2 212 10 consumm Parter 2 212 11 shadow_rod Var 2 212 12 shadow_rtams Var 2 15.760 15.750 15.750 11 shadow_rtams Var 3 11.236 9.950 9.360 3.850 12 shadow_rtams Var 3 11.236 15.760 15.750 15.750 15.750 15.750 10_1Ur 0.Ger 16.700 7.000 7.000 7.000 7.000 7.000 10_1Ur 1.Ger 1.172 11.256 15.750 15.750 15.750 15.750 15.750 15.750 10_1Ur 1.267 7.000 7.000 7.000 7.000 7.000 7.000 10_1Ur 1.275 15.276 15.276 15.276 12.272 11.272 10_1Ur 1.262 1.263 12.000 12.000 12.000 12	
0 pine_Bood Var 2 2/12 in_Bei 10/25 15/250 15/250 10 consumm Par 2 72 in_Bei 12/25 13/356 13/350 15/250 12 shadow_trans Var 3 11/25 14/350 15/250 15/250 12 shadow_trans Var 3 11/25 14/350 33/56 33/56 p_n_Not in_Ger 15/750 15/750 15/750 15/750 12 shadow_trans Var 3 11/25 17/125 17/125 m_Not in_Ger 30/30 73/30 73/30 73/30 73/30 p_n_Not in_Ger 9.00 2.39/00 23/90 23/90 23/90 23/90 23/90 23/90 23/90 23/90 23/90 16/90 16/00 16/00 16/00 16/00 16/00 16/00 16/00 16/00 16/00 16/00 16/00 16/00 16/00 16	
j j j j j j j j j j j j j j j j j j j	
No custom Var 2 Var 2 Var 3 11 3dadow Var 3 11.23 12 shadow_trans Var 3 11.23 m.Bat 3.80 3.80 3.80 3.80 3.80 3.80 3.80 9.30 12 shadow_trans Var 3 11.23 m.Ger fi.570 fi.570 fi.570 fi.570 fi.570 18 m.Gw m.Ger fi.570 fi.570 fi.570 fi.570 fi.570 19.49 m.Luk fi.02 7.300 7.300 7.300 7.300 7.300 fi.300 10.11k 2.370 2.3700 2.301 2.301 <t< td=""><td></td></t<>	
1 1	
12 Sindood Lidii S Vai S 11,550 15,750 15,750 1 1 9,350 9,350 9,350 15,750 15,750 1 1 1 7,800 7,800 7,800 7,800 1 1 1 1 2,300 2,300 2,300 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
In_Elig 7,800 7,800 7,800 7,800 In_LKL 23,900 23,900 23,900 23,900 pn_Neth In_Ger 9,000 9 9 pn_Neth In_Ger 9,000 9000 9 pn_Meth 17,125 17,125 17,125 17,125 In_SPP 16,000 16,000 16,000 16,000 AgLIC 9,375 12,875 12,875 12,875 pn_1bt In_T 6,475 6,475 6,475 pn_Ger GLIC 3,000 4,250 4,250 pn_Gat Rait 1,000 11,000 13,000 4,250 pn_Method Indu 3,000 3,500 3,500 3,500 pn_Method Indu 3,000 3,500 3,500 3,500 pn_Method Indu 3,000 3,500 3,500 3,500 pn_Method Indu 3,000 3,500 3,575 3,575 m_T<	
n_u 23,00 23,00 23,00 23,00 n_mNeth n_G 9,000 9,000 9,000 9,000 n_mAg n_L 7,125 7,125 7,125 7,125 7,126 n_mAg n_SP 16,000 16,000 16,000 16,000 16,000 n_Lib n_Lt 5,475 5,475 12,875 12,875 n_Lib n_Lt 5,475 5,475 5,475 12,875 n_Lib 1,14 5,475 5,475 5,475 5,475 n_Ga 21,000 3,000 4,250 4,250 4,250 n_Ga 1,020 3,000 4,250 4,250 4,250 n_Gad 1,020 3,030 2,150 13,000 13,000 13,000 13,000 n_Gad 1,025 3,894 3,050 13,000 13,000 13,000 13,000 13,000 n_TFr n_SW 0,815 1,262 3,575 3,575 3,575	
nm_Nethim_Gee9.0009.0009.0009.000nm_Aleim_1t47.12547.12547.12547.125nm_Aleim_SpP16.00016.00016.00016.000MagLo9.8759.87512.87512.875pm_Lisim_1t6.4766.4766.4766.476pm_GerGeLU3.0003.0003.0003.000nm_NethMinu1.00013.5003.000nm_NethMinu1.00011.00013.500nm_NethMinu1.0203.000nm_NethMinu1.0203.000nm_NethMinu1.0203.000nm_NethMinu3.000nm_Neth	
n_Alg in, It 17, 125 17, 125 17, 125 17, 125 n_SPP 16, 000 16, 000 16, 000 16, 000 AlgLQ 9, 875 9, 875 12, 875 12, 875 n_Lib In, It 5, 475 5, 475 5, 475 pn_Lib In, It 5, 475 6, 475 5, 475 pn_SQL0 30, 00 30, 00 42, 50 27, 00 27, 000 pn_Nig NigLQ 11, 00 11, 00 13, 500 13, 500 13, 500 13, 500 In_Ger In_C 6, 327 2, 839 4 5 36, 79 38, 99 In_SC 1, 715 16, 20 2 5 36, 79 38, 99 36, 79 38, 99 In_Fr In_SW 0, 813 16, 22 35, 75 35, 75 35, 75 In_Fr In_SW 0, 813 36, 69 36, 69 36, 69 36, 69 36, 69	
In_SpP 16,000 16,000 16,000 AlgLQ 9,875 12,875 12,875 pn_Lib In_t 5,475 5,475 5,475 pn_Sp EgUQ 3,000 4,250 4,250 pn_Cat Qatig 21,000 27,000 27,000 pn_Nig NigUQ 11,000 13,500 3,500 n_Cat n_Cat 8,300 5,475 5,475 n_MiguQ 11,000 21,000 27,000 27,000 pn_SiguQ 11,000 11,000 13,500 13,500 n_Cat n_Cat 8,300 5,475 5,475 n_Tes 1,745 1,025 1 1 n_Fer 1,745 3,672 3,672 3,672 n_Fer 0,813 1,262 3,575 3,575 n_Fer 27,719 28,046 30,669	
AlgLQ 9,875 9,875 12,875 pn_Lib tu_t 5,475 5,475 5,475 pn_Eg EgLQ 3,000 4,250 4,250 pn_Cut Qatif 21,000 27,000 27,000 pn_Mode tu_fce 1,000 11,000 13,500 pn_Sut u_fce tu_fce 1,115 13,500 tu_fce tu_fce 1,175 1,026 1 tu_fce u_fce 3,679 38,994 tu_fce 3,679 38,994 36,729 38,994 tu_fce actif 3,672 38,994 36,729 38,994 tu_fce actif 3,672 38,994 36,729 38,994 tu_fce actif 3,672 36,964 30,664 30,664 30,664	
pn_Lib in_Lt 5.475 5.475 5.475 pn_Ey EgLQ 3.000 3.000 4.250 4.250 pn_Qat Qatti 21.00 21.000 27.000 27.000 pn_Nig NigLQ 11.00 13.500 13.500 tn_Ge in_Aus 6.475 5.475 m_Su 1.715 1.026 1 1 m_Finition 1.715 1.626 1 1 tn_Finition 0.613 2.622 3.672 3.672 3.672 tn_Finition 1.715 1.026 1 1 2 1 2 tn_Finition 3.673 3.672 3.672 3.672 3.672 3.672 tn_Finition 0.733 3.672 3.672 3.672 3.672 3.672 tn_Finition 0.7719 2.8748 3.664 3.669 3.664 3.669	
nn_{Eg} $EgLQ$ 3.00 3.00 4.250 4.250 nn_{Cd} $2atiq$ 21.50 21.50 27.00 27.000 nn_{Mi} $NigLQ$ 11.00 11.00 13.500 13.500 nn_{Cd} in_{Cd} 6.27 2.800 2 2 n_{L} n_{L} 6.27 2.800 2 n_{L} n_{L} 3.750 3.970 n_{L} n_{L} 3.770 3.890 n_{L} n_{L} 3.775 3.672 n_{L} n_{L} 2.779 28.04 3.652	
pn_QatQattiq21,0021,0027,0027,00pn_NigNigLQ11,0011,0013,50013,500tn_Gertn_Cz6,3272,880 \cdot tn_Aus \cdot 3.500 \cdot tn_Aus1,7151,02 \cdot en_Ger36,70938,9436,729tn_Frtn_Sw0,8131,2623,575cn_Fr27,71928,04630,669	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
cn_Ger 36,709 38,994 36,729 38,999 In_Fr In_Sw 0,813 1,262 3,575 3,575 on_Fr 27,719 28,046 30,669 30,669	
tn_Fr tn_Sw 0.813 1.262 3.575 3.575 cn_Fr 27.719 28.046 30.664 30.669	
cn_Fr 27,719 28,046 30,564 30,669	
tr_tt cn_tt 42,489 40,913 43,021 41,261	
tn_Pol tn_Ger 0,979 3,249	
cn_Pol 7,779 8,012 7,837 8,049	
Symbol search Reset V Squeeze defaults Ordering: 4 1 2 3	
Next Prev Search Vext Prev Next	

Data->Math->Modelling->Results (Example)

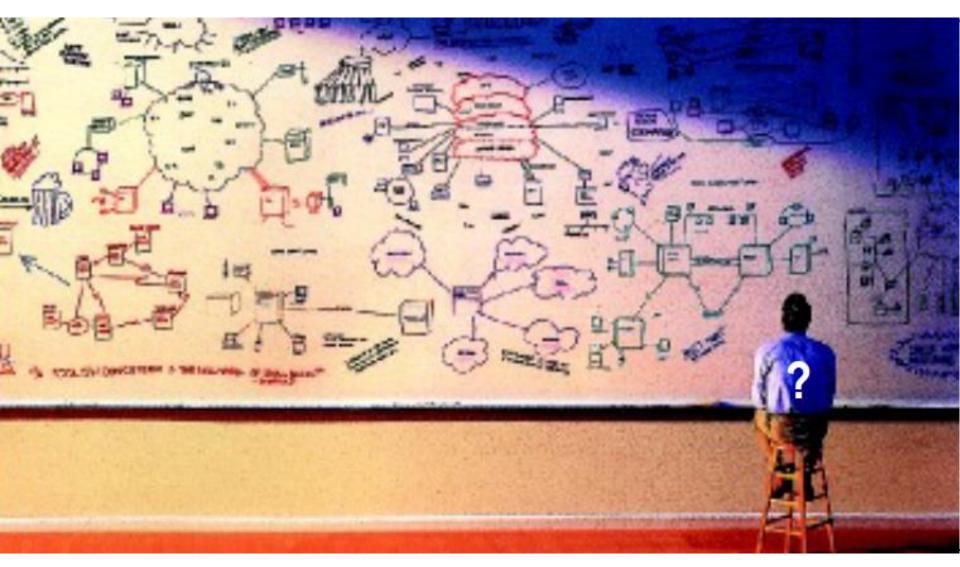
-tu


Brandenburgische Technische Universität Cottbus


Data->Math->Modelling->Results (Example)

Brandenburgische Technische Universität Cottbus

Areas for the future work: middle- and long-term


1

Brandenburgische Technische Universität

Cottbus

THANK YOU!

Brandenburgische Technische Universität Cottbus

Some (classes of) optimization problems have a "twin" problem,

⇒ This is called the "dual problem"

Illustration using a simple linear program:

Mathematical formulation Example of interpretation

 $\begin{array}{ll} \min_{x \in \mathbb{R}} & a^T x & & \text{Minimize cost of supplying electricity} \\ \text{s.t.} & Ax \leq b \quad (y) & & \text{constraints} \end{array}$

Maximize pay-off such that the dual constraints are satisfied

⇒ If the optimal objective values are identical, we call it strong duality

Source: [4]

max $b^T y$

s.t. $A^T y = a$ (x)

y∈R.

Appendix A: KKT formulations

The "classical" formulation of Karush-Kuhn-Tucker conditions:

$$0 = \nabla_{u} f(x^{*}) + \sum_{i} \lambda_{i}^{*} \nabla_{u} g_{i}(x^{*}) + \sum_{j} \mu_{j}^{*} \nabla_{u} h_{j}(x^{*}) , \quad x_{u}^{*} \text{ (free)}$$
$$0 \ge g_{i}(x^{*}) \perp \lambda_{i}^{*} \ge 0$$
$$0 = h_{j}(x^{*}) , \quad \mu_{j}^{*} \text{ (free)}$$

• One alternative formulation (of many) :

$$0 \leq \nabla_{u} f(x^{*}) + \sum_{i} \lambda_{i}^{*} \nabla_{u} g_{i}(x^{*}) + \sum_{j} \mu_{j}^{*} \nabla_{u} h_{j}(x^{*}) \perp x_{u}^{*} \geq 0$$

$$0 \leq -g_{i}(x^{*}) \perp \lambda_{i}^{*} \geq 0$$

$$0 = h_{j}(x^{*}) , \quad \mu_{j}^{*} \text{ (free)}$$

Source: [4]

Technische Universität Cottbus

Name	Author	Туре	Region	MP	Nodes	Time Scale	Time resolution	Seasons	Dynamics
NEMS	EIA U.S.	LP	North America	no	15	2030	1 year	2	yes
ICF GMM	ICF Int.	NLP	US	no	114	several years	monthly	12	no
WGM	Egging	MCP	World	yes	41	2030	5 years	2	yes
FRISBEE	Statistics Norway	PE	World	no	13	2030	1 year	1	yes
COLUMBUS	Hecking and Panke, EWI	MCP	World	yes	-	2050	monthly	12	yes
GASMOD	Holz, DIW Berlin	MCP	Europe	yes	6	2025	10 years	1	yes
GASTALE	Lise and Hobbs	MCP	Europe	yes	19	2030	5 years	3	yes
TIGER	Lochner et al., EWI	LP	Europe	no	-	2020	monthly	12	yes
NATGAS	Zwart and Mulder	MCP	Europe	yes	-	2035	5 years	2	yes
Current	BTU LE	МСР	Europe	no	53	2025	5 years	1	no

Appendix C: assumptions for a base case scenario

Brandenburgische Technische Universität Cottbus

All gas infrastructure projects (pipeline or LNG capacity extensions) which are at a completion stage will be on operation within the planned time;

Gas production/field depletion of the main gas fields for each producer will follow an expected pattern;

Growth rate of compound annual demand for natural gas (CAGR) will follow projections of IEA (2012) and is assumed to be +0,7% for all countries in the model;

The current conflict in east Ukraine will not have a direct impact on transit politics, i.e. Ukraine will continue to exploit gas infrastructure for transit services; no emergencies happen.

- 1. Bertsekas, D.P., 1999. Nonlinear programming.
- 2. Cremer, H., Gasmi, F., Laffont, J.-J., 2003. Access to pipelines in competitive gas markets. Journal of Regulatory Economics 24, 5–33.
- 3. Ferris, M.C., Munson, T.S., 2000a. Complementarity problems in GAMS and the PATH solver. Journal of Economic Dynamics and Control 24, 165–188.
- InfraTrain 2014 One and Two-level Energy Market Equilibrium Modelling, Daniel Huppmann
- Hafner, M., Karbuz, S., Esnault, B., El Andaloussi, H., 2008. Long-term natural gas supply to Europe: Import potential, infrastructure needs and investment promotion. Energy & Environment 19, 1131–1153.
- 6. Secretariat, E.C., 2006. Gas Transit Tariffs in selected Energy Charter Treaty Countries. Energy Charter Secretariat, Brussels, Belgium.