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Introduction to MCP formulations 
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 MCP (mixed complementarity programming) is a common modelling 

approach to describe various energy markets around the world. 

 

 Complementarity models generalize linear programs (LP), quadratic 

programs (QP) and (convex) nonlinear programs (NLPs)  

 

 
 

 
 



Introduction to MCP formulations: types of optimization 

problems 
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Source: [4] 



Introduction to MCP formulations 
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 MCP (mixed complementarity programming) is a common modelling 

approach to describe various energy markets around the world. 

 

 Complementarity models generalize linear programs (LP), quadratic 

programs (QP) and (convex) nonlinear programs (NLPs)  

 

 Complementarity problems are appropriate for modelling the 

regulated/deregulated, perfect/imperfect competition that characterizes 

today’s energy markets 

 
 

 
 



Method of Lagrange multipliers: problem definition 
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In mathematical optimization, the method of Lagrange multipliers is a 

strategy for finding the local maxima and minima of a function subject to 

equality constraints: 
 

 
 

𝑚𝑎𝑥 𝑓(𝑥, 𝑦) 

𝑠. 𝑡. 𝑔 𝑥, 𝑦 = 𝑐  

Where  f(x,y) – objective function 

            g(x,y) - constraint 



Method of Lagrange multipliers 
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In mathematical optimization, the method of Lagrange multipliers is a 

strategy for finding the local maxima and minima of a function subject to 

equality constraints: 
 

 
 
𝑚𝑎𝑥 𝑓(𝑥, 𝑦) 

𝑠. 𝑡. 𝑔 𝑥, 𝑦 = 𝑐  

Key point: 2 curves are tangent at the same point -> 

i.e. they have the same slope 



Method of Lagrange multipliers 
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In mathematical optimization, the method of Lagrange multipliers is a 

strategy for finding the local maxima and minima of a function subject to 

equality constraints: 
 

 
 
𝑚𝑎𝑥 𝑓(𝑥, 𝑦) 

𝑠. 𝑡. 𝑔 𝑥, 𝑦 = 𝑐  

Gradient of the function shows the direction of the 

max increase of the function: 

𝛻𝑓 𝑥, 𝑦 =
𝜕𝑓

𝜕𝑥
,
𝜕𝑓

𝜕𝑦
 

𝛻𝑔 𝑥, 𝑦 =
𝜕𝑔

𝜕𝑥
,
𝜕𝑔

𝜕𝑦
 



Method of Lagrange multipliers: Gradient 
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In mathematics, the gradient is a generalization of the usual concept of 

derivative of a function in one dimension to a function in several dimensions. 

 
 
 Gradient points in the direction of the greatest rate of increase of the function 

and its magnitude is the slope of the graph in that direction 

where the ei are the orthogonal unit 

vectors pointing in the coordinate 

directions. 



Method of Lagrange multipliers 
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In mathematical optimization, the method of Lagrange multipliers is a 

strategy for finding the local maxima and minima of a function subject to 

equality constraints: 
 

 
 
𝑚𝑎𝑥 𝑓(𝑥, 𝑦) 

𝑠. 𝑡. 𝑔 𝑥, 𝑦 = 𝑐  

If 2 vectors are orthogonal to the same slope, it has 

to be the case that they are parallel: 

𝛻𝑓 𝑥, 𝑦 = λ ∙ 𝛻𝑔 𝑥, 𝑦  

 



Method of Lagrange multipliers: economical interpretation 
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 In economics the optimal profit to a player is calculated subject to a 

constrained space of actions, where a Lagrange multiplier is the change 

in the optimal value of the objective function (profit) due to the relaxation 

of a given constraint 

 

 

 

 

 

 

 

 

  
 

𝛻𝑓 𝑥, 𝑦 = λ ∙ 𝛻𝑔 𝑥, 𝑦  

 

𝜕𝐿 𝑥, 𝑦

𝜕𝑔 𝑥, 𝑦
= λ 

 

in such a context λ is the marginal cost of 

the constraint, and is referred as the 

shadow price 



Karush–Kuhn–Tucker conditions 
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 The Karush–Kuhn–Tucker (KKT) conditions are first order necessary 

conditions for a solution in nonlinear programming to be optimal, 

provided that some regularity conditions are satisfied.  

 

 Allowing inequality constraints, the KKT approach applied to nonlinear 

programming generalizes the method of Lagrange multipliers, which 

allows only equality constraints.  

 

 

 

 

 

 

 

  
 



Karush–Kuhn–Tucker conditions 
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 Let us consider the problem: 

 min𝐹(𝑥) 

 𝑠. 𝑡.      𝑔𝑖 𝑥 ≤ 0   (λ𝑖)  ∀𝑖 = 1,…𝑛             

             ℎ𝑖 𝑥 = 0    (µ𝑖)  ∀𝑗 = 1,…𝑚 

 For this problem, the KKT conditions are: 

𝛻𝑓 𝑥 + λ𝑖𝛻g𝑖 x

𝑛

𝑖=1

+ µ𝑖𝛻h𝑗 x

𝑛

𝑗=1

= 0 

0 ≥ 𝑔𝑖 𝑥 ⊥  λ𝑖 ≥ 0   ∀𝑖 = 1,…𝑛             
0 = ℎ𝑖 𝑥        µj free  ∀𝑗 = 1,…𝑚              

The solution stationarity is ensured by the equation (1.4). Equations (1.5) and 

(1.6) ensure complementarity and feasibility of a solution 

(1.1) 

(1.2) 

(1.3) 

(1.4) 

(1.5) 

(1.6) 

Source: [1] 



Introduction to MCP formulations 
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Let us provide the following illustration of such a mathematical structure 

based on a simple problem faced by a gas producer: 

 

  𝑚𝑎𝑥
𝑞≥0
П =𝑞𝑝 𝑞 − 𝐶(𝑞)     

    

     𝑠. 𝑡. 𝑞 ≤ 𝑄      

 
where:  

 q - gas sales  

 p(q) - аffine inversе demand functiоn 

  C(q) – production cost function 

 (1.7) 

(1.8) 



Introduction to MCP formulations 
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The KKT conditions for this problem are: 

  0 ≤ 𝑞 ⊥ 𝑝 + (
𝜕𝑝

𝜕𝑞
𝑞) − 𝐶′(𝑞) + λ ≤ 0                        (1.9) 

            0 ≤ λ ⊥ (𝑞 − 𝑄) ≤ 0                     (1.10) 

Equation (1.9) is a short way to express the following complementarity 

problem:  

                          0 ≤ 𝑞      

      𝑝 − 𝐶′(𝑞) + λ ≤ 0 

   𝑞 𝑝 − 𝐶′ 𝑞 + λ = 0 

where symbol ⊥ states orthogonality 



Introduction to MCP formulations 
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 The complementarity model of a market is done by combining the KKTs 

of all market players with market clearing conditions. 

 

 Numerical problems in MCP format can be efficiently solved with PATH 

solver by using the GAMS software.  

 

 The General Algebraic Modelling System (GAMS) is a modeling system 

used for mathematical programming and optimization. GAMS is designed 

to model complex and large-scale problems, such as: LP, NLP, MIP, 

MINLP, etc. 
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Network representation 

 

 

18 BTU Cottbus  –  Chair of Energy Economics 

 Market participants as producers, wholesale traders, final consumers, LNG 

terminals are represented in the model as nodes (N) 

 

 There is a list of activities possible to happen in certain node accordingly to its 

geographical location: production, export, import, consumption 

 

 All nodes in the model are interconnected through arcs. Data for the existing 

European gas infrastructure was taken from ENTSOG. Arcs have exogenously 

assigned capacity 𝑐𝑎𝑝𝑛,𝑚
𝑝𝑖𝑝𝑒

 in bcm/a 

 

 Pipeline interconnections are modelled only by one-directional arcs, although 

transmission pipelines theoretically could be bidirectional. Gas flows which have 

to be feasible in two directions are achieved via two one-directional arcs 

 

 The model neglects gas friction and pressure drops in the network 

 



Structure 
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Set of assumptions 
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 No certain gas flow destination, which gives each consumer the possibility to 

choose own supplier independently 

 

 Gas producers have full information about the demand in each node and adjust 

their production amount optimizing their profits 

 

 The model operates with an assumption of one wholesale trader located in each 

country and the absence of vertical integration between companies on 

subsequent layers 

 
 The model is based on a static modelling approach. Thus, we exogenously 

assign investments in natural gas infrastructure (such as new pipeline or LNG 

capacity which enters the model in expected year of completion) 
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Mathematical description: Producer 

 

 

profit production costs 

where (1) represents the producer’s profit function 

(1) 

 Producer’s objective is to maximize its profit ( ) 
𝑝𝑟𝑜𝑑
𝑛 by deciding the quantity of 

gas to be produced (𝑝𝑟) 
 

 Its profit results from selling the gas produced at the price (𝑃𝑡𝑜𝐸𝑝,𝑛) minus his 

production costs (𝑃𝑟𝐶𝑝,𝑛) which is a linear function from the quantity of gas 

produced 



Mathematical description: Producer 
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Each producer operates under the production capacity constraint: 

where equation (1.2) is a production constraint and (1.3) ensures that production 

variable takes only positive values 

(1.2)  

(1.3)  



Mathematical description: Producer 
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 Following the common approach of obtaining a complementarity model, the 

problem has to be converted into a minimization problem. The signs of the 

objective function will be inverted and constraints restructured to the following 

form: 

(1.4) 

(1.5)  

(1.6)  



Mathematical description: Producer 

 

 

25 BTU Cottbus  –  Chair of Energy Economics 

 By deriving the first-order conditions (FOCs) we obtain Karush-Kuhn-Tucker 

conditions for this problem: 

(1.6)  

(1.7)  

Linear cost function ensures convexity requirement of KKT conditions to find an 

optimal solution for the given problem 



Mathematical description: Exporter 
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 The objective of an exporter is to maximize its profit (П𝑛,𝑚
𝑒𝑥𝑝
) from gas sales to the 

market m at the border price (𝑏𝑝
𝑚
)  

 

 Natural gas has also to be transported to a node m; (𝑡𝑓𝑒𝑒𝑛,𝑚) is a transport fee 

paid by an exporter to use arc(s) between n and m nodes 

gas sales 
transportation expenses 

purchase expenses  

where equation (2.1) is a represents the profit function of an exporter 

(2.1)  



Mathematical description: Exporter 
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Subject to: 

(2.2)  

(2.3)  

(2.4)  

Equation (2.2) is a constraint which ensures flow and activity conservation. 

Literally it means that trade gas volumes have to be equal to the physical gas 

flow. 



Mathematical description: Exporter 
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Thus, for an exporter P placed in export node n, all sales out of node n have to be 

equal to the physical flows out of this node: 

Note that each node for some set of arcs can be viewed as import or export node 

In case we consider n node as an import node, all import trades from other nodes 

to node n have to be equal to all physical gas inflows: 



Mathematical description: Exporter 
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 Deriving KKTs from the corresponding minimization problem we obtain: 

(2.5)  

(2.6)  

(2.7)  



Mathematical description: Wholesaler 
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 The objective of each trader (𝑤 ∈ 𝑊) is to maximize its profit from importing gas 

from upstream players at (𝑏𝑝
𝑚
) and re-selling it to the final market C 

 

 Country of destination can be of the same node where a trader is placed (sales 

for inner consumption) or a different one (wholesale gas trade).  

 

 In case of sales to other consumption nodes trader w has to pay also transport 

fee (𝑡𝑓𝑒𝑒𝑛,𝑚) for using an arc between n and m nodes.  

gas sales 
transportation expenses 

purchase expenses  

where equation (3.1) is a trader’s profit function 

(3.1) 



Mathematical description: Wholesaler 
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Subject to: 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

Equations (3.2-3) are constraints which ensure flow and activity conservation.  



Mathematical description: Wholesaler 
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 Deriving KKTs from the corresponding minimization problem we obtain: 

(3.6) 

(3.7) 

(3.8) 



Mathematical description: TSO 
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 Transmission system operator (TSO) is responsible for allocating network 

capacity to market players who participate in gas import/export/transit activities 

 

 TSO uses capacity allocation mechanism which assigns additional network 

capacity to the player with the highest marginal willingness-to-pay for it, i.e. 

access to pipeline infrastructure is granted according to those players who value 

capacity the most 

It was shown by Cremer et al. (2003) that modelling of profit maximizing 

competitive TSO gives the same results as social welfare optimization 

gas flows allocation 

 

transmission costs  

(4.1) 



Mathematical description: TSO 
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Subject to: 

where totfl represents total physical gas flow between two nodes. It equals to a sum 

of all export and wholesale flows between these nodes: 

(4.2) 

(4.3) 

(4.4) 

Where equation (4.1) is the objective function. Constraint (4.2) ensures that the 

total physical gas flow through the arc (𝑛 − 𝑚) will never overcome its capacity. 



Mathematical description: TSO 
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 Transmission costs are linear on the subject of distance over similar terrain [6]. 

Hence, transmission costs 𝑇𝐶𝑛→𝑚 𝑡𝑜𝑡𝑓𝑙𝑛→𝑚  are assumed to be the product of 

distances between nodes and average value of LRMC of gas transmission.  

 

 LRMC includes differentiation on offshore/onshore pipeline and Europe grid/FSU 

grid. Distances between nodes are assigned exogenously and equal to distances 

calculated between the centers of the countries relevant to nodes 

 The KKTs from the corresponding minimization problem are:  

 

(4.5) 

(4.6) 



Mathematical description: market clearing 

36 BTU Cottbus  –  Chair of Energy Economics 

 The market clearing equation for the upstream level ensures that the whole 

quantity of gas produced by producer will be purchased by exporter and sold to 

the following market level: 

 Second clearing condition is satisfied if the entire quantity of gas imported by 

downstream players equals to the entire gas quantity traded on a wholesale 

market: 

(5.1) 

(5.2) 



Mathematical description: market clearing 
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 Equation (4.4) was used to define the total physical gas flow which also serves 

as a market clearing condition between TSO and exporters/traders: 

 The final market clearing constraint guarantees that the price for final consumers 

matches the inverse demand function at the equilibrium point: 

(5.3) 

(5.4) 



Mathematical description: demand function 

 

 

38 BTU Cottbus  –  Chair of Energy Economics 

The affine inverse demand function is commonly expressed in the following way: 

𝑃 𝑄 = 𝑎 + 𝑏 · 𝑄 

where P(Q) represents the price of a good as a function of quantity demanded (Q).  

The constant b represents a slope of the function and the constant a is an 

intersection point with the vertical axis.  

 

Inverse demand function is plotted on a coordinate system with the price on the 

vertical axis and quantity on the horizontal axis: 

(6.1) 



Mathematical description: demand function 
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Estimation of inverse demand function is done around the reference point (pref, Qref): 

𝑃𝑟𝑒𝑓 = 𝑎 + 𝑏 · 𝑄𝑟𝑒𝑓 

where Qref  is the total consumption in the node n. It aggregates consumption 

quantities of all the final consumers located in that node.  

 

Using definition of the price elasticity of demand  (PED), for the demand function 

the following definitions can be written (here indices are omitted for the sake of 

simplicity): 

𝑄 = −
𝑎

𝑏
+
1

𝑏
· 𝑝; 

𝑏 =
𝑝

𝑄
·
1

𝜀
; 

𝜀 = −
𝜕𝑄

𝜕𝑝
·
𝑝

𝑄
=
1

𝑏
·
𝑝

𝑄
; 

𝑎 = 𝑝 − 𝑏 · 𝑄; 

(6.2) 

(6.3) 



Mathematical description: demand function 
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Applying results obtained in (6.3) into (1.1) gives the following inverse demand 

curve: 

𝑝 = 𝑃𝑟𝑒𝑓 − 𝑏 · 𝑄𝑟𝑒𝑓 +
𝑃𝑟𝑒𝑓

𝑄𝑟𝑒𝑓
·
1

𝜀
· 𝑄 

𝑝 = 𝑃𝑟𝑒𝑓(1 −
1

𝜀
) +
𝑃𝑟𝑒𝑓

𝑄𝑟𝑒𝑓
·
1

𝜀
· 𝑄 
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Countries included in the model and major open data 

sources: 
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Exporting countries Importing countries 

Type of 
connection 

pipeline 
connection 

LNG 
liquefaction 

terminals 

Type of 
connection 

pipeline  
connection 

LNG 
 regasification 

terminals 

Russia a (a) Germany a (a) 

Norway a (a) France a a 

Netherlands a (a) Italy a a 

Algeria a a Poland a   

Libya a (a) Czech Rep. a   

Eqypt a Austria a 
  

Nigeria a Slovakia a 
  

Qatar a Belarus a 
  

a 
existing connection 

included in the model 

Ukraine a   

Belgium a a 

(a) 
planned/possible 

connection or terminals not 

included in the model 

Switzerland a   

UK a a 

Baltic reg. a (a)  

Major sources:  Slovenia a   
http://www.entsog.eu/ Hungary a   

http://www.gie.eu.com/ Romania a   
http://www.naturalgaseurope.com/ Balkan reg. a (a) 

      Spain/Portugal a a 

http://www.entsog.eu/
http://www.gie.eu.com/
http://www.naturalgaseurope.com/


Data->Math->Modelling->Results 
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Data->Math->Modelling->Results (GDX) 
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Data->Math->Modelling->Results (Example) 
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Data->Math->Modelling->Results (Example) 
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Areas for the future work: middle- and long-term 
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Further  work 

Extensive 

World Gas 
Model 

Gas Storages 

Intensive 

Non-linear 

production 
cost  

functions 

Demand 
sectors 

Market power 
Dynamics 
(shale gas) 



THANK YOU! 
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Appendix A: Duality concept 
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Source: [4] 



Appendix A: KKT formulations 
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Source: [4] 



Appendix B: model comparisons 
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Name Author Type Region  MP Nodes 
Time 

Scale 

Time 

resolution 
Seasons Dynamics 

NEMS EIA U.S.  LP 

North 

America 

no 15 2030 1 year 2 yes 

ICF GMM ICF Int. NLP US no 114 

several 

years 

monthly 12 no 

WGM Egging MCP World yes 41 2030 5 years 2 yes 

FRISBEE 
Statistics 

Norway 

PE World no 13 2030 1 year 1 yes 

COLUMBUS 
Hecking and 

Panke, EWI 
MCP World yes - 2050 monthly 12 yes 

GASMOD 
Holz, DIW 

Berlin 

MCP Europe yes 6 2025 10 years 1 yes 

GASTALE 
Lise and 

Hobbs 

MCP Europe yes 19 2030 5 years 3 yes 

TIGER 
Lochner et al., 

EWI 
LP Europe no - 2020 monthly 12 yes 

NATGAS 
Zwart and 

Mulder 

MCP Europe yes - 2035 5 years 2 yes 

Current BTU LE MCP Europe no 53 2025 5 years 1 no 



Appendix C: assumptions for a base case scenario 
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All gas infrastructure projects (pipeline or LNG capacity 

extensions) which are at a completion stage will be on 

operation within the planned time; 

Gas production/field depletion of the main gas fields for 

each producer will follow an expected pattern;  

Growth rate of compound annual demand for natural gas 

(CAGR) will follow projections  of IEA (2012) and is 

assumed to be +0,7% for all countries in the model; 

The current conflict in east Ukraine will not have a direct 

impact on transit politics, i.e. Ukraine will continue to 

exploit gas infrastructure for transit services; no 

emergencies happen. 
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