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𝑁,𝑀 set of all nodes in the model. N includes: production nodes,

wholesale traders, LNG liquefaction and regasification terminals, 

storage nodes, investor nodes, consumption nodes

𝑃 set of all gas producers (upstream players) in the model

𝑊 set of all gas traders (downstream players), that imports gas from 

producers and deliver it to final markets

𝑇, 𝑆 set of all time periods



Parameters : production
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𝑝𝑟𝑜𝑑_𝑐𝑜𝑠𝑡𝑠𝑛,𝑠
𝑝𝑟𝑜𝑑

production costs of producer located in a node n, $/tcm

𝑝𝑟𝑜𝑑_𝑐𝑜𝑛𝑠𝑡𝑟𝑝,𝑛,𝑠
𝑝𝑟𝑜𝑑

total available production capacity of producer located in a node n, bcm

Core model

Investor activity

LTC obligation

Storage activity



Parameters: production
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source: IBRD - "The future of NGM in EU"



Parameters: transportation (pipeline & LNG)
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𝑝𝑟𝑜𝑑_𝑐𝑜𝑠𝑡𝑠𝑛,𝑠
𝑝𝑟𝑜𝑑

production costs of producer located in a node n, $/tcm

𝑝𝑟𝑜𝑑_𝑐𝑜𝑛𝑠𝑡𝑟𝑝,𝑛,𝑠
𝑝𝑟𝑜𝑑

total available production capacity of producer located in a node n, bcm

𝑐𝑎𝑝_𝑝𝑖𝑝𝑒𝑛,𝑚
𝑝𝑖𝑝𝑒

initial capacity of connection between n and m nodes, bcm

𝑐𝑎𝑝_𝑎𝑑𝑑𝑛,𝑚,𝑠
𝑝𝑖𝑝𝑒

exogenous infrastructure capacity expansion, bcm

𝑝𝑖𝑝𝑒_𝑐𝑜𝑛𝑠𝑡𝑟𝑛,𝑚,𝑠
𝑝𝑖𝑝𝑒

sum of cap_pipe and cap_add parameters, bcm

𝑡𝑟𝑎𝑛𝑠_𝑐𝑜𝑠𝑡𝑠𝑛,𝑚,𝑠
𝑝𝑖𝑝𝑒

gas transmission cost  between n and m nodes, $/tcm

Core model

Investor activity

LTC obligation

Storage activity



Parameters: transportation (pipeline & LNG)
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source: ENTSOG_CAP_MAY2015



Parameters: transportation (pipeline & LNG)
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LNG module incorporates:

✓ LNG liquefaction and regasification terminals

➢ Installed capacities

➢ Investment plans

✓ Geographical location of corresponding harbors 

and sea distances

✓ Shipping cost own estimation based on

➢ Shipping distance

➢ Average speed of tankers

➢ Average LNG carrier size

➢ Fuel consumption of LNG vessels

➢ Average harbor costs, etc.

LNG terminals data:

GIE LNG MAP 2015

Sea distances calculation: 

http://www.sea-distances.org



Parameters: transportation (pipeline & LNG)
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𝑝𝑟𝑜𝑑_𝑐𝑜𝑠𝑡𝑠𝑛,𝑠
𝑝𝑟𝑜𝑑

production costs of producer located in a node n, $/tcm

𝑝𝑟𝑜𝑑_𝑐𝑜𝑛𝑠𝑡𝑟𝑝,𝑛,𝑠
𝑝𝑟𝑜𝑑

total available production capacity of producer located in a node n, bcm

𝑐𝑎𝑝_𝑝𝑖𝑝𝑒𝑛,𝑚
𝑝𝑖𝑝𝑒

initial capacity of connection between n and m nodes, bcm

𝑐𝑎𝑝_𝑎𝑑𝑑𝑛,𝑚,𝑠
𝑝𝑖𝑝𝑒

exogenous infrastructure capacity expansion, bcm

𝑝𝑖𝑝𝑒_𝑐𝑜𝑛𝑠𝑡𝑟𝑛,𝑚,𝑠
𝑝𝑖𝑝𝑒

sum of cap_pipe and cap_add parameters, bcm

𝑡𝑟𝑎𝑛𝑠_𝑐𝑜𝑠𝑡𝑠𝑛,𝑚,𝑠
𝑝𝑖𝑝𝑒

gas transmission cost  between n and m nodes, $/tcm

Core model

Investor activity

LTC obligation

Storage activity



10BTU Cottbus  – Chair of Energy Economics

Parameters: semi-automatic exogenous capacity 

extensions (pipeline & LNG & storage)



Parameters: demand function
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𝑝𝑟𝑜𝑑_𝑐𝑜𝑠𝑡𝑠𝑛,𝑠
𝑝𝑟𝑜𝑑

production costs of producer located in a node n, $/tcm

𝑝𝑟𝑜𝑑_𝑐𝑜𝑛𝑠𝑡𝑟𝑝,𝑛,𝑠
𝑝𝑟𝑜𝑑

total available production capacity of producer located in a node n, bcm

𝑐𝑎𝑝_𝑝𝑖𝑝𝑒𝑛,𝑚
𝑝𝑖𝑝𝑒

initial capacity of connection between n and m nodes, bcm

𝑐𝑎𝑝_𝑎𝑑𝑑𝑛,𝑚,𝑠
𝑝𝑖𝑝𝑒

exogenous infrastructure capacity expansion, bcm

𝑝𝑖𝑝𝑒_𝑐𝑜𝑛𝑠𝑡𝑟𝑛,𝑚,𝑠
𝑝𝑖𝑝𝑒

sum of cap_pipe and cap_add parameters, bcm

𝑡𝑟𝑎𝑛𝑠_𝑐𝑜𝑠𝑡𝑠𝑛,𝑚,𝑠
𝑝𝑖𝑝𝑒

gas transmission cost  between n and m nodes, $/tcm

𝑐𝑜𝑛𝑠𝑛,𝑠
𝑟𝑒𝑓

reference consumption in node N, bcm

𝑝𝑟𝑖𝑐𝑒𝑛,𝑠
𝑟𝑒𝑓

reference price in node N, $/tcm

𝜎𝑛
𝑑𝑒𝑚 PED (price elasticity of demand) in market N

Core model

Investor activity

LTC obligation

Storage activity
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Estimation of inverse demand function is done around 

the reference point (Pref, Qref):

𝑃𝑟𝑒𝑓 = 𝑎 + 𝑏 · 𝑄𝑟𝑒𝑓

where Qref is the total consumption in the node n. It aggregates consumption quantities of all the final

consumers located in that node.

Using definition of the price elasticity of demand (PED), for the demand function the following definitions

can be written (here indices are omitted for the sake of simplicity):

𝑄 = −
𝑎

𝑏
+
1

𝑏
· 𝑝;

𝑏 =
𝑝

𝑄
·
1

𝜀
;

𝜀 = −
𝜕𝑄

𝜕𝑝
·
𝑝

𝑄
=
1

𝑏
·
𝑝

𝑄
;

𝑎 = 𝑝 − 𝑏 · 𝑄;

Parameters: demand function
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It gives the following inverse demand curve:

𝑝 = 𝑃𝑟𝑒𝑓 − 𝑏 · 𝑄𝑟𝑒𝑓 +
𝑃𝑟𝑒𝑓

𝑄𝑟𝑒𝑓
·
1

𝜀
· 𝑄

𝑝 = 𝑃𝑟𝑒𝑓(1 −
1

𝜀
) +

𝑃𝑟𝑒𝑓

𝑄𝑟𝑒𝑓
·
1

𝜀
· 𝑄

Parameters: demand function

 𝑝_𝐹𝐶𝑛 ,𝑠 −  𝑎𝑛 ,𝑠 + 𝑏𝑛 ,𝑠 ·  𝑤ℎ_𝑠𝑎𝑙𝑒𝑤 ,𝑚 ,𝑛 ,𝑠

𝑚≠𝑛𝑤

  = 0,     ∀𝑛, 𝑠 

 Calibration Consumption

(endogenous variable)



Parameters
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𝑖𝑛𝑣𝐿𝑁𝐺_𝑐𝑎𝑝𝑛,𝑚,𝑠
𝑖𝑛𝑣 constraint for endogenous investments into gas transport (LNG)

infrastructure, bcm

𝑖𝑛𝑣𝐿𝑁𝐺_𝑓𝑖𝑥𝑐𝑛,𝑚,𝑠
𝑖𝑛𝑣 investor’s (LNG) fixed cost, $/tcm

Core model

Investor activity

LTC obligation

Storage activity



Parameters
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𝑖𝑛𝑣𝐿𝑁𝐺_𝑐𝑎𝑝𝑛,𝑚,𝑠
𝑖𝑛𝑣 constraint for endogenous investments into gas transport (LNG)

infrastructure, bcm

𝑖𝑛𝑣𝐿𝑁𝐺_𝑓𝑖𝑥𝑐𝑛,𝑚,𝑠
𝑖𝑛𝑣 investor’s (LNG) fixed cost, $/tcm

𝐿𝑇𝐶𝑝,𝑛,𝑚,𝑠 long-term contract obligation closures, bcm

Core model

Investor activity

LTC obligation

Storage activity



Parameters: long-term contract obligation closures database
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source: DIW “Long-Term Contracts in the Natural Gas Industry – Literature Survey and Data on 426 Contracts (1965-2014)”, 2015



Parameters: long-term contract obligation closures database
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source: DIW “Long-Term Contracts in the Natural Gas Industry – Literature Survey and Data on 426 Contracts (1965-2014)”, 2015



Parameters: pipeline deliveries covered by the database
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source: DIW “Long-Term Contracts in the Natural Gas Industry – Literature Survey and Data on 426 Contracts (1965-2014)”, 2015



Parameters
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𝑖𝑛𝑣𝐿𝑁𝐺_𝑐𝑎𝑝𝑛,𝑚,𝑠
𝑖𝑛𝑣 constraint for endogenous investments into gas transport (LNG)

infrastructure, bcm

𝑖𝑛𝑣𝐿𝑁𝐺_𝑓𝑖𝑥𝑐𝑛,𝑚,𝑠
𝑖𝑛𝑣 investor’s (LNG) fixed cost, $/tcm

𝐿𝑇𝐶𝑝,𝑛,𝑚,𝑠 long-term contract obligation closures, bcm

𝑐𝑎𝑝_𝑠𝑡𝑜𝑟𝑛,𝑠
𝑠𝑡 storage capacity located in a node n, bcm

𝑖𝑛𝑗_𝑣𝑜𝑙𝑛,𝑠
𝑠𝑡 maximum volume that can be injected into storage facility, bcm per season

𝑤𝑖𝑡ℎ_𝑣𝑜𝑙𝑛,𝑠
𝑠𝑡 maximum volume that can be withdrawed from storage, bcm per season

𝑙𝑜𝑠𝑠 gas losses that occur within one injection/withdrawal cycle, %

Core model

Investor activity

LTC obligation

Storage activity
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20BTU Cottbus  – Chair of Energy Economics

exp_𝑠𝑎𝑙𝑒𝑝,𝑛,𝑚,𝑠
gas sales of p’s exporter from export node n to market m

exp_𝑝ℎ𝑝,𝑛,𝑚,𝑠 export physical gas flow from export node n to market m

𝑤ℎ_𝑠𝑎𝑙𝑒𝑤,𝑛,𝑚,𝑠 gas sales of w’s wholesale trader from market n to market m

𝑤ℎ_𝑝ℎ𝑤,𝑛,𝑚,𝑠 wholesale gas flow (including transit gas flow) from market to market m 

𝑝𝑖𝑝𝑒_𝑓𝑙𝑛,𝑚,𝑠 total physical gas flow between n and m nodes

𝑠_𝑝𝑟𝑜𝑑𝑝,𝑛,𝑠
𝑝𝑟𝑜𝑑

shadow variable of production constraint in production node p

𝑠_𝑡𝑟𝑎𝑛𝑠𝑛,𝑚,𝑠
𝑝𝑖𝑝𝑒/𝑙𝑛𝑔

shadow variable of transit constraint for an arc between n and m nodes

𝑠_𝑒𝑥𝑝𝑏𝑎𝑙𝑝,𝑛,𝑠
𝑒𝑥𝑝

shadow variable of mass balance constraint for each exporter

𝑠_𝑤ℎ𝑏𝑎𝑙𝑤,𝑛,𝑠
𝑤ℎ𝑠 shadow variable of mass balance constraint for each wholesaler

𝑝_𝑏𝑛,𝑠 border price for gas sales in market n

𝑝_𝐹𝐶𝑚,𝑠 price of final consumption in consumption node c(n)

𝑡𝑟_𝑓𝑒𝑒𝑛,𝑚,𝑠 transport fee for using an arc between n and m nodes
Core model

Investor activity

LTC obligation

Storage activity
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𝐼𝑛𝑣𝐿𝑁𝐺𝑛,𝑚,𝑠 investments in LNG infrastructure, bcm

𝑠_𝑖𝑛𝑣𝑒𝑠𝑡𝐿𝑁𝐺𝑛,𝑚,𝑠 shadow variable of LNG investment constraint

𝑠𝑡𝑛,𝑠 gas stock level at the beginning of a season, bcm

𝑠𝑣𝑛,𝑠 injected volume per season, bcm

𝑠𝑤𝑛,𝑠 withdrawed volume per season, bcm

𝑝𝑐𝑤𝑛,𝑠 shadow variable of storage withdrawal constraint

𝑝𝑐𝑣𝑛,𝑠 shadow variable of storage injection constraint

𝑝𝑐𝑠𝑡𝑛,𝑠 shadow variable of storage capacity constraint

𝛼𝑛,𝑠 shadow variable of storage balance equations

Core model

Investor activity

LTC obligation

Storage activity
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Model structure: schematic overview
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Supplier problem: objective function

(1.1)

max
exp _𝑠𝑎𝑙𝑒𝑝,𝑛,𝑚,𝑠, exp _𝑝ℎ𝑝,𝑛,𝑚,𝑠

П𝑝,𝑛
𝑠𝑢𝑝

=෍

𝑠

൝

ൡ

෍

𝑚

ቁexp_𝑠𝑎𝑙𝑒𝑝,𝑛,𝑚,𝑠 ∙ 𝑝_𝑏𝑚,𝑠 − 𝑝𝑟𝑜𝑑_𝑐𝑜𝑠𝑡𝑠𝑛,𝑠
𝑝𝑟𝑜𝑑

(ex p _ 𝑠𝑎𝑙𝑒𝑝,𝑛,𝑚,𝑠

− ෍

𝑛→𝑚∈𝑁

𝑡𝑟_𝑓𝑒𝑒𝑛,𝑚,𝑠 ∙ ex p _ 𝑝ℎ𝑝,𝑛,𝑚,𝑠

Supplier’s (p∈P) objective is to maximize its profit by deciding the quantity of gas to be

produced and exported. Its profit results from selling the gas produced at the border price

minus the production and transportation costs. (𝑡𝑟_𝑓𝑒𝑒𝑛,𝑚) is a transport fee paid by

supplier to use arc(s) between n and m nodes.
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Supplier problem: constraints

s.t.

𝑝𝑟𝑜𝑑_𝑐𝑜𝑛𝑠𝑡𝑟𝑝,𝑛,𝑠
𝑝𝑟𝑜𝑑

−෍

𝑚

exp_𝑠𝑎𝑙𝑒𝑝,𝑛,𝑚,𝑠 ≥ 0, ∀𝑝, 𝑛, 𝑠 𝑠_𝑝𝑟𝑜𝑑𝑝,𝑛,𝑠
𝑝𝑟𝑜𝑑

෍

𝑚≠𝑛

exp_𝑠𝑎𝑙𝑒𝑝,𝑛,𝑚,𝑠 − ෍

𝑚≠𝑛

exp_𝑝ℎ𝑝,𝑛,𝑚,𝑠

+ ෍

𝑚≠𝑛

exp_𝑝ℎ𝑝,𝑚,𝑛,𝑠 − ෍

𝑚≠𝑛

exp_𝑠𝑎𝑙𝑒𝑝,𝑚,𝑛,𝑠 = 0, ∀𝑝, 𝑛, 𝑠 (𝑠_𝑒𝑥𝑝𝑏𝑎𝑙𝑝,𝑛,𝑠
𝑒𝑥𝑝

)

exp_𝑠𝑎𝑙𝑒𝑝,𝑛,𝑚,𝑠
≥ 0, ∀𝑝, 𝑛,𝑚, 𝑠

exp_𝑝ℎ𝑝,𝑛,𝑚,𝑠 ≥ 0, ∀𝑝, 𝑛,𝑚, 𝑠

(1.2)

(1.3)

(1.4)

where equation (1.2) is a production constraint, (1.3) ensures flow and trade volume 

conservation and (1.4) ensures nonnegativity of decision vectors

exp_𝑠𝑎𝑙𝑒𝑝,𝑛,𝑚,𝑠 − 𝐿𝑇𝐶𝑝,𝑛,𝑚,𝑠 ≥ 0 ∀𝑝, 𝑛,𝑚, 𝑠 𝑠_𝑙𝑡𝑐𝑐𝑎𝑝𝑝,𝑛,𝑚,𝑠
𝑙𝑡𝑐

(x)



MCP / Karush–Kuhn–Tucker conditions
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➢ Let us consider the problem:

𝑚𝑖𝑛 𝐹(𝑥)

𝑠. 𝑡. 𝑔𝑖 𝑥 ≤ 0 (λ𝑖) ∀𝑖 = 1,…𝑛

ℎ𝑖 𝑥 = 0 (µ𝑖) ∀𝑗 = 1,…𝑚

➢ For this problem, the KKT conditions are:

𝛻𝑓 𝑥 +෍

𝑖=1

𝑛

λ𝑖𝛻g𝑖 x +෍

𝑗=1

𝑚

µ𝑖𝛻h𝑗 x ≥ 0 ⊥ 𝑥 ≥ 0

0 ≥ 𝑔𝑖 𝑥 ⊥ λ𝑖 ≥ 0 ∀𝑖 = 1,…𝑛
0 = ℎ𝑖 𝑥 µj free ∀𝑗 = 1,…𝑚

The solution stationarity is ensured by the equation (1.8). Equations (1.9) and (1.10) ensure 

complementarity and feasibility of a solution

(1.5)

(1.6)

(1.7)

(1.8)

(1.9)

(1.10)

The Karush–Kuhn–Tucker (KKT) conditions are first order necessary conditions for a

solution in nonlinear programming to be optimal, provided that some regularity

conditions are satisfied.
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Supplier problem: KKT conditions

0 ≤ exp_𝑠𝑎𝑙𝑒𝑝,𝑛,𝑚,𝑠

⊥ −𝑝_𝑏𝑚,𝑠 + 𝑝𝑟𝑜𝑑_𝑐𝑜𝑠𝑡𝑠𝑛,𝑠
𝑝𝑟𝑜𝑑

+ 𝑠_𝑝𝑟𝑜𝑑𝑝,𝑛,𝑠
𝑝𝑟𝑜𝑑

+ 𝑠_𝑒𝑥𝑝𝑏𝑎𝑙𝑝,𝑛,𝑠
𝑒𝑥𝑝

− 𝑠_𝑒𝑥𝑝𝑏𝑎𝑙𝑝,𝑚,𝑠
𝑒𝑥𝑝

≥ 0 ∀𝑝, 𝑛,𝑚, 𝑠

0 ≤ exp_𝑝ℎ𝑝,𝑛,𝑚𝑠 ⊥ 𝑡𝑟_𝑓𝑒𝑒𝑛,𝑚,𝑠 − 𝑠_𝑒𝑥𝑝𝑏𝑎𝑙𝑝,𝑛,𝑠
𝑒𝑥𝑝

+ 𝑠_𝑒𝑥𝑝𝑏𝑎𝑙𝑝,𝑚,𝑠
𝑒𝑥𝑝

≥ 0 ∀𝑝, 𝑛,𝑚, 𝑠

0 ≤ 𝑠_𝑝𝑟𝑜𝑑𝑝,𝑛,𝑠
𝑝𝑟𝑜𝑑

⊥ 𝑝𝑟𝑜𝑑_𝑐𝑜𝑛𝑠𝑡𝑟𝑝,𝑛,𝑠
𝑝𝑟𝑜𝑑

−෍

𝑚

exp_𝑠𝑎𝑙𝑒𝑝,𝑛,𝑚,𝑠 ≥ 0 ∀𝑝, 𝑛, 𝑠

∀𝑝, 𝑛, 𝑠

𝑠_𝑒𝑥𝑝𝑏𝑎𝑙𝑝,𝑛,𝑠
𝑒𝑥𝑝

free,

෍

𝑚≠𝑛

exp_𝑠𝑎𝑙𝑒𝑝,𝑛,𝑚,𝑠 − ෍

𝑚≠𝑛

exp_𝑝ℎ𝑝,𝑛,𝑚,𝑠 + ෍

𝑚≠𝑛

exp_𝑝ℎ𝑝,𝑚,𝑛,𝑠 − ෍

𝑚≠𝑛

exp_𝑠𝑎𝑙𝑒𝑝,𝑚,𝑛,𝑠 = 0

(1.11)

(1.12)

(1.13)

(1.14)

The KKTs from the corresponding minimization problem are: 
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Wholesaler problem: objective function

(2.1)

The objective of each trader (w∈W) is to maximize its profit from importing gas from upstream

suppliers and satisfying demand of the final market. Wholesale nodes can be also used for

the gas transit. No distribution costs (gas allocation inside a single node) is incorporated, i.e.

gas is consumed “somewhere” in the node.

max
𝑤ℎ_𝑠𝑎𝑙𝑒𝑤,𝑛,𝑚,𝑠,𝑤ℎ_𝑝ℎ𝑤,𝑛,𝑚,𝑠

П𝑤,𝑛
𝑤𝑠

=෍

𝑠

൝

ൡ

෍

𝑚

𝑤ℎ_𝑠𝑎𝑙𝑒𝑤,𝑛,𝑚,𝑠 ∙ 𝑝_𝐹𝐶𝑚,𝑠 −෍

𝑚𝑚

𝑤ℎ_𝑠𝑎𝑙𝑒𝑤,𝑚,𝑛,𝑠 ∙ 𝑝_𝑏𝑛,𝑠

− ෍

𝑛→𝑚∈𝑁

𝑡𝑟_𝑓𝑒𝑒𝑛,𝑚,𝑠 ∙ 𝑤ℎ_𝑝ℎ𝑤,𝑛,𝑚,𝑠
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Wholesaler problem: constraints

s.t.

(2.2)

(2.3)

where equation (2.2) ensures flow and trade volume conservation and (2.3) ensures 

nonnegativity of decision vectors

෍

𝑚≠𝑛

𝑤ℎ_𝑠𝑎𝑙𝑒𝑤,𝑛,𝑚,𝑠 − ෍

𝑚≠𝑛

𝑤ℎ_𝑝ℎ𝑤,𝑛,𝑚,𝑠

+ ෍

𝑚≠𝑛

𝑤ℎ_𝑝ℎ𝑤,𝑚,𝑛,𝑠 − ෍

𝑚≠𝑛

𝑤ℎ_𝑠𝑎𝑙𝑒𝑤,𝑚,𝑛,𝑠 = 0 , ∀𝑤, 𝑛,𝑚, 𝑠 (𝑠_𝑤ℎ𝑏𝑎𝑙𝑤,𝑛,𝑠
𝑤ℎ𝑠

)

𝑤ℎ_𝑠𝑎𝑙𝑒𝑤,𝑛,𝑚,𝑠 ≥ 0, ∀𝑤, 𝑛,𝑚, 𝑠

𝑤ℎ_𝑝ℎ𝑤,𝑛,𝑚,𝑠 ≥ 0, ∀𝑤, 𝑛,𝑚, 𝑠
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Wholesaler problem: KKT conditions

∀w, 𝑛,𝑚, 𝑠

∀w, 𝑛,𝑚, 𝑠

∀w, 𝑛, 𝑠

The KKTs from the corresponding minimization problem are: 

0 ≤ 𝑤ℎ_𝑠𝑎𝑙𝑒𝑤,𝑛,𝑚,𝑠 ⊥ −𝑝_𝐹𝐶𝑚,𝑠 + 𝑝_𝑏𝑚,𝑠 + 𝑠_𝑤ℎ𝑏𝑎𝑙𝑤,𝑛,𝑠
𝑤ℎ𝑠 − 𝑠_𝑤ℎ𝑏𝑎𝑙𝑤,𝑚,𝑠

𝑤ℎ𝑠 ≥ 0

0 ≤ 𝑤ℎ_𝑝ℎ𝑤,𝑛,𝑚,𝑠 ⊥ 𝑡𝑟_𝑓𝑒𝑒𝑛,𝑚,𝑠 − 𝑠_𝑤ℎ𝑏𝑎𝑙𝑤,𝑛,𝑠
𝑤ℎ𝑠 + 𝑠_𝑤ℎ𝑏𝑎𝑙𝑤,𝑚,𝑠

𝑤ℎ𝑠 ≥ 0

𝑠_𝑤ℎ𝑏𝑎𝑙𝑤,𝑛,𝑠
𝑤ℎ𝑠 free,

෍

𝑚≠𝑛

𝑤ℎ_𝑠𝑎𝑙𝑒𝑤,𝑛,𝑚,𝑠 − ෍

𝑚≠𝑛

𝑤ℎ_𝑝ℎ𝑤,𝑛,𝑚,𝑠 + ෍

𝑚≠𝑛

𝑤ℎ_𝑝ℎ𝑤,𝑚,𝑛,𝑠 − ෍

𝑚≠𝑛

𝑤ℎ_𝑠𝑎𝑙𝑒𝑤,𝑚,𝑛,𝑠 = 0

(2.4)

(2.5)

(2.6)
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TSO problem: objective function

(3.1)

Transmission system operator (TSO) is responsible for allocating network capacity to market

players who participate in gas import/export activities. TSO is assumed to operate the

network efficiently. That means that an access to infrastructure is granted according to those

players who value capacity the most (capacity allocation mechanism assigns additional

network capacity to the player with the highest marginal willingness-to-pay). It was proved by

Cremer et al. (2003) that modelling of profit maximizing competitive TSO gives the same

results as social welfare optimization in case of convex optimization problem. Its revenues

results from congestion charges in case of pipeline saturation and expenses are the actual

network operation costs.

max
𝑝𝑖𝑝𝑒_𝑓𝑙𝑛,𝑚,𝑠

П𝑇𝑆𝑂

=෍

𝑠

෍

𝑛→𝑚

𝑡𝑟_𝑓𝑒𝑒𝑛,𝑚,𝑠 ∙ 𝑝𝑖𝑝𝑒_𝑓𝑙𝑛,𝑚,𝑠 − 𝑡𝑟_𝑐𝑜𝑠𝑡𝑠𝑛,𝑚,𝑠
𝑝𝑖𝑝𝑒 (𝑝𝑖𝑝𝑒_𝑓𝑙

𝑛,𝑚,𝑠
)
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TSO problem: constraints

s.t.

(3.2)

(3.3)

where equation (3.2) is a capacity constraint for an arc nm, (3.3) defines 

total flow and (3.4) ensures nonnegativity of a decision vector

𝑝𝑖𝑝𝑒_𝑐𝑜𝑛𝑠𝑡𝑟𝑛,𝑚,𝑠
𝑝𝑖𝑝𝑒

+ ෍

𝑠′<𝑠

𝐼𝑛𝑣𝐿𝑁𝐺𝑛,𝑚,𝑠 ≥ 𝑝𝑖𝑝𝑒_𝑓𝑙𝑛,𝑚,𝑠 ∀𝑛,𝑚, 𝑠 (𝑠_𝑡𝑟𝑎𝑛𝑠𝑛,𝑚,𝑠
𝑝𝑖𝑝𝑒

)

෍

𝑝

ex p _ 𝑝ℎ𝑝,𝑛,𝑚,𝑠 +෍

𝑤

𝑤ℎ_𝑝ℎ𝑤,𝑛,𝑚,𝑠 = 𝑝𝑖𝑝𝑒_𝑓𝑙𝑛,𝑚,𝑠 ∀𝑛,𝑚, 𝑠 𝑡𝑟_𝑓𝑒𝑒𝑛,𝑚,𝑠

𝑝𝑖𝑝𝑒_𝑓𝑙𝑛,𝑚,𝑠 ≥ 0, ∀𝑛,𝑚, 𝑠 (3.4)

Core model

Investor activity

LTC obligation

Storage activity
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TSO problem: KKT conditions

∀𝑛,𝑚, 𝑠

∀𝑛,𝑚, 𝑠

The KKTs from the corresponding minimization problem are: 

(3.5)

(3.6)

(3.7)

∀𝑛,𝑚, 𝑠

0 ≤ 𝑝𝑖𝑝𝑒_𝑓𝑙𝑛,𝑚,𝑠 ⊥ −𝑡𝑟_𝑓𝑒𝑒𝑛,𝑚,𝑠 + 𝑡𝑟_𝑐𝑜𝑠𝑡𝑠𝑛,𝑚,𝑠
𝑝𝑖𝑝𝑒

+ 𝑠_𝑡𝑟𝑎𝑛𝑠𝑛,𝑚,𝑠
𝑝𝑖𝑝𝑒

≥ 0

0 ≤ 𝑠_𝑡𝑟𝑎𝑛𝑠𝑛,𝑚,𝑠
𝑝𝑖𝑝𝑒

⊥ 𝑝𝑖𝑝𝑒_𝑐𝑜𝑛𝑠𝑡𝑟𝑛,𝑚,𝑠
𝑝𝑖𝑝𝑒

+ ෍

𝑠′<𝑠

𝐼𝑛𝑣𝐿𝑁𝐺𝑛,𝑚,𝑠 − 𝑝𝑖𝑝𝑒_𝑓𝑙𝑛,𝑚,𝑠 ≥ 0

𝑡𝑟𝑎𝑛𝑠_𝑓𝑒𝑒𝑛,𝑚,𝑠 𝑓𝑟𝑒𝑒, ෍

𝑝

ex p _ 𝑝ℎ𝑝,𝑛,𝑚,𝑠 +෍

𝑤

𝑤ℎ_𝑝ℎ𝑤,𝑛,𝑚,𝑠 = 𝑝𝑖𝑝𝑒_𝑓𝑙𝑛,𝑚,𝑠

Core model

Investor activity

LTC obligation

Storage activity
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TSO & LNG investor problem: objective function

(4.1)

Investor (the network operator) determines the optimal capacity of gas infrastructure

simultaneously with the other players. We assume that he has perfect and complete

information about other players. The investor optimizes his discounted net profits from the

congestion revenue minus operation and fixed cost. The investment mechanism is such that

there will only be a positive investment if the total revenues from congestion fees 𝑠_𝑡𝑟𝑎𝑛𝑠𝑛,𝑚,𝑠
𝑝𝑖𝑝𝑒

*

for the incremental capacity exceed the total fixed costs 𝑖𝑛𝑣𝐿𝑁𝐺_𝑓𝑖𝑥𝑐𝑛,𝑚,𝑠
𝑖𝑛𝑣 **.

* It can be considered that the congestion price of an arc reflects the marginal willingness to pay of the using parties (i.e.

exporters) for an addition unit of capacity.

** The assumption of continuous investment is certainly a simplification, but it can be taken in natural gas transmission sector

where the increase of compressor capacity allows for increase of pipe/LNG capacity by small amounts.

max
𝐼𝑛𝑣𝐿𝑁𝐺𝑛,𝑚,𝑠, 𝑝𝑖𝑝𝑒_𝑓𝑙𝑛,𝑚,𝑠

𝑁𝑃𝑉𝑡𝑠𝑜

= 𝛿𝑠෍

𝑠

ቊ

ቋ

෍
𝑛,𝑚

ቂ

ቃ

𝑡𝑟_𝑓𝑒𝑒𝑛,𝑚,𝑠 ∙ 𝑝𝑖𝑝𝑒_𝑓𝑙𝑛,𝑚,𝑠 − 𝑡𝑟_𝑐𝑜𝑠𝑡𝑠𝑛,𝑚,𝑠
𝑝𝑖𝑝𝑒 (𝑝𝑖𝑝𝑒_𝑓𝑙

𝑛,𝑚,𝑠
)

− 𝑖𝑛𝑣𝐿𝑁𝐺_𝑓𝑖𝑥𝑐𝑛,𝑚,𝑠
𝑖𝑛𝑣 𝐼𝑛𝑣𝐿𝑁𝐺𝑛,𝑚,𝑠
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TSO & LNG investor problem: constraints

s.t.

(4.2)

(x 4.3)

where equation (4.2) is a capacity constraint for an arc nm, (4.3) defines 

the investment capacity (4.4) ensures nonnegativity of decision vectors

(4.4)

𝑝𝑖𝑝𝑒_𝑐𝑜𝑛𝑠𝑡𝑟𝑛,𝑚,𝑠
𝑝𝑖𝑝𝑒

+ ෍

𝑠′<𝑠

𝐼𝑛𝑣𝐿𝑁𝐺𝑛,𝑚,𝑠 ≥ 𝑝𝑖𝑝𝑒_𝑓𝑙𝑛,𝑚,𝑠 ∀𝑛,𝑚, 𝑠 (𝑠_𝑡𝑟𝑎𝑛𝑠𝑛,𝑚,𝑠
𝑝𝑖𝑝𝑒

)

𝑖𝑛𝑣𝐿𝑁𝐺_𝑐𝑎𝑝𝑛,𝑚,𝑠
𝑖𝑛𝑣 ≥ 𝐼𝑛𝑣𝐿𝑁𝐺𝑛,𝑚,𝑠 ∀𝑛,𝑚, 𝑠 (𝑠_𝑖𝑛𝑣𝑒𝑠𝑡𝐿𝑁𝐺𝑛,𝑚,𝑠

𝑖𝑛𝑣
)

𝐼𝑛𝑣𝐿𝑁𝐺𝑛,𝑚,𝑠 ≥ 0, ∀𝑛,𝑚, 𝑠

𝑝𝑖𝑝𝑒_𝑓𝑙𝑛,𝑚,𝑠≥ 0, ∀𝑛,𝑚, 𝑠

Core model

Investor activity

LTC obligation

Storage activity
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TSO & LNG investor problem: KKT conditions

∀𝑛,𝑚, 𝑠

∀𝑛,𝑚, 𝑠

The KKTs from the corresponding minimization problem are: 

(4.5)

(4.6)

(4.7)

∀𝑛,𝑚, 𝑠

0 ≤ 𝑝𝑖𝑝𝑒_𝑓𝑙𝑛,𝑚,𝑠 ⊥ 𝛿𝑠(−𝑡𝑟_𝑓𝑒𝑒𝑛,𝑚,𝑠 + 𝑡𝑟_𝑐𝑜𝑠𝑡𝑠𝑛,𝑚,𝑠
𝐿𝑁𝐺 ) + 𝑠_𝑡𝑟𝑎𝑛𝑠𝑛,𝑚,𝑠

𝑝𝑖𝑝𝑒
≥ 0

0 ≤ 𝐼𝑛𝑣𝐿𝑁𝐺𝑛,𝑚,𝑠

⊥ 𝛿𝑠
𝜕𝑖𝑛𝑣𝐿𝑁𝐺_𝑓𝑖𝑥𝑐𝑝,𝑛,𝑠

𝑖𝑛𝑣 𝐼𝑛𝑣𝐿𝑁𝐺𝑛,𝑚,𝑠

𝜕𝐼𝑛𝑣𝐿𝑁𝐺𝑛,𝑚,𝑠
− ෍

𝑠′<𝑠

𝑠_𝑡𝑟𝑎𝑛𝑠𝑛,𝑚,𝑠
𝐿𝑁𝐺 + 𝑠_𝑖𝑛𝑣𝑒𝑠𝑡𝐿𝑁𝐺𝑛,𝑚,𝑠 ≥ 0

(x 4.8)

∀𝑛,𝑚, 𝑠

0 ≤ 𝑠_𝑡𝑟𝑎𝑛𝑠𝑛,𝑚,𝑠
𝑝𝑖𝑝𝑒

⊥ (𝑝𝑖𝑝𝑒_𝑐𝑜𝑛𝑠𝑡𝑟𝑛,𝑚,𝑠
𝑝𝑖𝑝𝑒

+ ෍

𝑠′<𝑠

𝐼𝑛𝑣𝐿𝑁𝐺𝑛,𝑚,𝑠 − 𝑝𝑖𝑝𝑒_𝑓𝑙𝑛,𝑚,𝑠) ≥ 0

0 ≤ 𝑠_𝑖𝑛𝑣𝑒𝑠𝑡𝐿𝑁𝐺𝑛,𝑚,𝑠 ⊥ 𝑖𝑛𝑣𝐿𝑁𝐺_𝑐𝑎𝑝𝑛,𝑚,𝑠
𝑖𝑛𝑣 − 𝐼𝑛𝑣𝐿𝑁𝐺𝑛,𝑚,𝑠 ≥ 0

Core model

Investor activity

LTC obligation

Storage activity

(4.6): the investment mechanism is such that there will only be a positive

investment if the total revenues from congestion fees 𝑠_𝑡𝑟𝑎𝑛𝑠𝑛,𝑚,𝑠
𝑝𝑖𝑝𝑒

for the

incremental capacity exceed the total fixed costs
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Storage operator problem (currently not used within MCP 

formulation)

(5.1)

The storage operator (SO) provides a mechanism to efficiently utilize storage capacity

(𝑐𝑎𝑝_𝑠𝑡𝑜𝑟𝑛,𝑠) for the wholesalers (storage capacity virtually is located in n wholesaler’s node).

SO maximizes the profits resulting from withdrawing/selling gas at peak price/demand levels

(𝑠𝑤𝑛,𝑠) while injecting it at low price/demand levels (𝑠𝑣𝑛,𝑠).

max
𝑠𝑣𝑛,𝑠, 𝑠𝑤𝑛,𝑠

ෑ

𝑛

𝑠𝑡𝑜𝑟

=෍

𝑠

𝑝_𝑏𝑛,𝑠 ∙ 𝑠𝑤𝑛,𝑠 − 𝑝_𝑏𝑛,𝑠𝑠 ∙ 𝑠𝑣𝑛,𝑠

s.t.

൯𝑆𝑡𝑛,𝑠+1 = 𝑆𝑡𝑛,𝑠 + 1 − 𝑙𝑜𝑠𝑠 ∙ 𝑠𝑣𝑛,𝑠 − 𝑠𝑤𝑛,𝑠 ∀𝑛, 𝑠 (𝛼𝑛,𝑠

𝑐𝑎𝑝_𝑠𝑡𝑜𝑟𝑛,𝑠
𝑠𝑡 ≥ 𝑆𝑡𝑛,𝑠, ∀𝑛, 𝑠 (𝑝𝑐𝑠𝑡𝑛,𝑠)

𝑖𝑛𝑗_𝑣𝑜𝑙𝑛,𝑠
𝑠𝑡 ≥ 𝑠𝑣𝑛,𝑠, ∀𝑛, 𝑠 (𝑝𝑐𝑣𝑛,𝑠)

𝑤𝑖𝑡ℎ_𝑣𝑜𝑙𝑛,𝑠
𝑠𝑡 ≥ 𝑠𝑤𝑛,𝑠, ∀𝑛, 𝑠 (𝑝𝑐𝑤𝑛,𝑠)

(5.2)

(5.3)

(5.4)

(5.5)
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Storage operator problem (currently not used within MCP 

formulation)

(5.6)

(5.7)

(5.8)

(5.9)

(5.10)

The KKTs from the corresponding minimization problem are: 

∀𝑛, 𝑠: 0 ≤ 𝑠𝑣𝑛,𝑠 ⊥ 𝑝_𝑏𝑛,𝑠 + 𝑝𝑐𝑣𝑛,𝑠 ≥ 1 − 𝑙𝑜𝑠𝑠 ∗ 𝛼𝑛,𝑠

∀𝑛, 𝑠: 0 ≤ 𝑠𝑤𝑛,𝑠 ⊥ 𝛼𝑛,𝑠 + 𝑝𝑐𝑤𝑛,𝑠 ≥ 𝑝_𝑏𝑛,𝑠

∀𝑛, 𝑠: 0 ≤ 𝑆𝑡𝑛,𝑠 ⊥ 𝛼𝑛,𝑠+1 + 𝑝𝑐𝑠𝑡𝑛,𝑠 ≥ 𝛼𝑛,𝑠

∀𝑛, 𝑠: 𝛼𝑛,𝑠 𝑓𝑟𝑒𝑒, 𝑆𝑡𝑛,𝑠+1= 𝑆𝑡𝑛,𝑠 + 1 − 𝑙𝑜𝑠𝑠 ∙ 𝑠𝑣𝑛,𝑠 − 𝑠𝑤𝑛,𝑠

∀𝑛, 𝑠: 0 ≤ 𝑝𝑐𝑠𝑡𝑛,𝑠 ⊥ 𝑐𝑎𝑝_𝑠𝑡𝑜𝑟𝑛,𝑠
𝑠𝑡 ≥ 𝑆𝑡𝑛,𝑠

∀𝑛, 𝑠: 0 ≤ 𝑝𝑐𝑣𝑛,𝑠 ⊥ 𝑖𝑛𝑗_𝑣𝑜𝑙𝑛,𝑠
𝑠𝑡 ≥ 𝑠𝑣𝑛,𝑠

∀𝑛, 𝑠: 0 ≤ 𝑝𝑐𝑤𝑛,𝑠 ⊥ 𝑤𝑖𝑡ℎ_𝑣𝑜𝑙𝑛,𝑠
𝑠𝑡 ≥ 𝑠𝑤𝑛,𝑠

(5.11)

(5.12)
Core model

Investor activity

LTC obligation

Storage activity
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Market clearing conditions

(6.1)

Where:

(6.1) is satisfied if the entire quantity of gas imported by each downstream player equals to the entire gas

quantity consumed, transported, or injected/withdrawed into storage.

(6.2) is used to define the total physical gas flow which also serves as a market clearing condition between

TSO and exporters/traders

(6.3) guarantees that the price for final consumers matches the inverse demand function at the equilibrium

point

Market clearing conditions combine the various optimization problem together into the one 

market-equilibrium problem: 

෍

𝑝

෍

𝑚

(ex p _ 𝑠𝑎𝑙𝑒𝑝,𝑚,𝑛,𝑠) =෍

𝑤

෍

𝑚

(𝑤ℎ_𝑠𝑎𝑙𝑒𝑤,𝑛,𝑚,𝑠) + 𝑠𝑤𝑛,𝑠 − 𝑠𝑣𝑛,𝑠 ∀𝑛, 𝑠 (𝑝_𝑏𝑛 𝑓𝑟𝑒𝑒)

෍

𝑝

ex p _ 𝑝ℎ𝑝,𝑛,𝑚,𝑠 +෍

𝑤

𝑤ℎ_𝑝ℎ𝑤,𝑛,𝑚,𝑠 = 𝑝𝑖𝑝𝑒_𝑓𝑙𝑛,𝑚,𝑠 ∀𝑛,𝑚, 𝑠 𝑡𝑟𝑎𝑛𝑠_𝑓𝑒𝑒𝑛,𝑚,𝑠 𝑓𝑟𝑒𝑒 (6.2)

(6.3)𝑝_𝐹𝐶𝑛,𝑠 − 𝑎𝑛,𝑠 + 𝑏𝑛,𝑠 ·෍

𝑤

෍

𝑚≠𝑛

𝑤ℎ_𝑠𝑎𝑙𝑒𝑤,𝑚,𝑛,𝑠 = 0 ∀𝑛, 𝑠 𝑝_𝐹𝐶𝑛,𝑠𝑓𝑟𝑒𝑒
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Representation of perfectly competitive & Cournot players

The parameter θm ∈ 0,1 is used to define different model settings of either Cournot

competition or perfect competition is assumed. In the case of perfect competition (θm = 0)
each player is a price-taker (players “perceives” price as a parameter – the conjecture that

a change in own supply will not induce a change of a market price). A value of (θm = 1)
means the Cournot player.

Where
𝜕𝑝_𝐹𝐶𝑚,𝑠 𝑤ℎ_𝑠𝑎𝑙𝑒𝑤,𝑛,𝑚,𝑠

𝜕𝑤ℎ_𝑠𝑎𝑙𝑒𝑤,𝑛,𝑚,𝑠
is a slope of demand function (𝑏𝑚,𝑠).

max
𝑤ℎ_𝑠𝑎𝑙𝑒𝑤,𝑛,𝑚,𝑠,𝑤ℎ_𝑝ℎ𝑤,𝑛,𝑚,𝑠

П𝑤,𝑛
𝑤𝑠

=෍

𝑠

෍

𝑚

𝑤ℎ_𝑠𝑎𝑙𝑒𝑤,𝑛,𝑚,𝑠 ∙ 𝑝_𝐹𝐶𝑚,𝑠(∙) −෍

𝑚𝑚

𝑤ℎ_𝑠𝑎𝑙𝑒𝑤,𝑚,𝑛,𝑠 ∙ 𝑝_𝑏𝑛,𝑠 − ෍

𝑛→𝑚∈𝑁

𝑡𝑟_𝑓𝑒𝑒𝑛,𝑚,𝑠 ∙ 𝑤ℎ_𝑝ℎ𝑤,𝑛,𝑚,𝑠

0 ≤ 𝑤ℎ_𝑠𝑎𝑙𝑒𝑤,𝑛,𝑚,𝑠

⊥ −𝑝_𝐹𝐶𝑚,𝑠 + θm
𝜕𝑝_𝐹𝐶𝑚,𝑠 𝑤ℎ_𝑠𝑎𝑙𝑒𝑤,𝑛,𝑚,𝑠

𝜕𝑤ℎ_𝑠𝑎𝑙𝑒𝑤,𝑛,𝑚,𝑠
∙ 𝑤ℎ_𝑠𝑎𝑙𝑒𝑤,𝑛,𝑚,𝑠 + 𝑝_𝑏𝑚,𝑠 + 𝑠_𝑤ℎ𝑏𝑎𝑙𝑤,𝑛,𝑠

𝑤ℎ𝑠 − 𝑠_𝑤ℎ𝑏𝑎𝑙𝑤,𝑚,𝑠
𝑤ℎ𝑠 ≥ 0



Solving the MCP model
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✓ The combination of all the Karush-Kuhn-Tucker conditions and the market

clearing conditions form the MCP.

✓ All profit functions are concave and differentiable, all cost functions are convex

and differentiable, thus, the KKT points are necessary and sufficient for the

optimal solution.

✓ Numerical problems in MCP format can be efficiently solved with PATH* solver.

✓ Model is formulated and solved in GAMS** software.

** The General Algebraic Modelling System (GAMS) is a modeling system used for mathematical programming

and optimization.

* The PATH algorithm relies on the key ideas of Newton’s method for solving a system of nonlinear equations,

namely: generation of a sequence of approximate solutions by solving linear approximations to the nonlinear

equations; constructing each linear approximation in the sequence as a first-order Taylor approximation about

the previous approximate solutions; and, when necessary to speed convergence, adjusting the generated

sequence of approximate solutions by damping procedure.



Example of MCP model implementation
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Montenegro, R., Riepin, I., Hauser P.

(2016): “Modelling of world LNG

market development: focus on US

investments and supplies”, IEEE

Conference Proceedings EEM 2016,

DOI: 10.1109/EEM.2016.7521361

Geographical coverage of the model

Supplier's share from Europe's import

Key questions analyzed:

• To which extent different world regions can be affected by US

LNG terminals’ capacity expansion and corresponding export

volumes?

• How other gas suppliers will react to a higher, or lower, US

export volumes overseas?

• How flexible US investment decisions with regard to LNG

capacity costs?



Content:
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1. Definitions and input data proceeding

2. MCP model: formulation and applications

3. NLP model: formulation and applications

4. Discussion
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NLP formulation: objective function

…consumer surplus

The objective function maximizes social welfare (or minimize loss in social welfare) over

the whole time intervals. SW is obtained by adding consumers’ and producers’ surplus at the

equilibrium point. Therefore, we calculate it as an area formed by the inverse demand and

supply functions. This quantity represents the net gain of all participants in the market.

Advantage: social welfare optimization problem is relatively easy to solve (as long as it

doesn’t incorporate integer or stochastic elements).

max 𝑆𝑊 =෍

𝑠

0,5 ∙ ෍

𝑤,𝑛,𝑚≠𝑛

𝑎𝑚,𝑠 − 𝑝_𝐹𝐶𝑚,𝑠 ∙ 𝑤ℎ_𝑠𝑎𝑙𝑒𝑤,𝑛,𝑚,𝑠

+ ෍

𝑤,𝑛,𝑚≠𝑛

𝑤ℎ_𝑠𝑎𝑙𝑒𝑤,𝑛,𝑚,𝑠 ∙ 𝑝_𝐹𝐶𝑚,𝑠

− ෍

𝑝,𝑛,𝑚≠𝑛

𝑒𝑥 𝑝 _ 𝑠𝑎𝑙𝑒𝑝,𝑚,𝑛,𝑠 ∙ 𝑚𝑝𝑐𝑛,𝑡
𝑝𝑟𝑜𝑑

− ෍

𝑛,𝑚≠𝑛

𝑝𝑖𝑝𝑒_𝑓𝑙𝑛,𝑚,𝑠 ∙ 𝑡𝑟_𝑐𝑜𝑠𝑡𝑠𝑛,𝑚,𝑠
𝑝𝑖𝑝𝑒

− ෍

𝑚

𝑠𝑣𝑚,𝑠 ∙ 𝑐𝑜𝑠𝑡𝑚
𝑠𝑡𝑜𝑟𝑒.𝑖𝑛 + 𝑠𝑣𝑚,𝑠 ∙ 𝑐𝑜𝑠𝑡𝑚

𝑠𝑡𝑜𝑟𝑒.𝑜𝑢𝑡

…producer surplus

…production cost

…transport cost

…storage cost
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NLP formulation: production cost function

NLP formulation allowed to incorporate production cost function proposed by Golombek et al.

(1995). The marginal supply cost curve is expressed as follows:

𝑚𝑝𝑐 𝑞 = 𝛼 + 𝛽 ∙ 𝑞 + 𝛾 ∙ 𝑙𝑛(
𝐶𝑎𝑝 − 𝑞

𝐶𝑎𝑝
)

Where 𝛼 > 0 is the minimum marginal unit cost term; 𝛽 ≥ 0 is the per unit linearly-increasing

cost term; and 𝛾 ≤ 0 is the term that induces high marginal cost when production is close to

full capacity. The parameters for the production cost function were originally derived to fit

merit-order type production costs function, and afterwards updated based on available open

sources.



Solving the NLP model
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✓ The NLP problem is formed by maximizing the SW objective function under the

set of constraints that are identical to the MCP model.

✓ Nonlinearities occur due to inverse demand function and Golombek production

cost function (both terms are convex*).

✓ After some workarounds IPOPT** solver was chosen for the resulting NLP model.

** https://www.coin-or.org/Ipopt/documentation/node3.html

* Huppmann, Daniel, Endogenous Investment Decisions in Natural Gas Equilibrium Models with Logarithmic

Cost Functions (November 1, 2012). DIW Berlin Discussion Paper No. 1253.

https://www.coin-or.org/Ipopt/documentation/node3.html


Example of NLP model implementation
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“Natural Gas Storages in Competition with 

Alternative Flexibility Sources” presented 

on the COLEDD conference, Sep 2016. 

The objective of the work was to analyze the future role of storages 

and their position in competition with other flexibility sources to meet  

European countries’  specific  demand fluctuations.

Eurostat Model output

90 percentile

Coefficient of variation yearly for selected countries

Which supply source brings most flexibility to 

meet demand fluctuations?

Gas demand fluctuations

Load duration curve



Content:
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1. Definitions and input data proceeding

2. MCP model: formulation and applications

3. NLP model: formulation and applications

4. Discussion



MCP vs NLP model
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Nonlinear problem (NLP)

Objective function

(maximization of social 

welfare)

Subject to:

Constraints (capacity,

balances, clearing 

conditions)

Mixed complementarity

problem (MCP)

KKT 1

KKT n

…

Subject to:

Constraints (capacity,

balances, clearing 

conditions)

min𝐹(𝑥)

𝑠. 𝑡. 𝑔𝑖 𝑥 ≤ 0 (λ𝑖) ∀𝑖 = 1,…𝑛

ℎ𝑖 𝑥 = 0 (µ𝑖) ∀𝑗 = 1,…𝑚

𝛻𝑓 𝑥 +෍

𝑖=1

𝑛

λ𝑖𝛻g𝑖 x +෍

𝑗=1

𝑛

µ𝑖𝛻h𝑗 x = 0

0 ≥ 𝑔𝑖 𝑥 ⊥ λ𝑖 ≥ 0 ∀𝑖 = 1,…𝑛
0 = ℎ𝑖 𝑥 µj free ∀𝑗 = 1,…𝑚

min෍

𝐽=1

𝑛

𝑓𝑗(𝑥𝑗)

𝑠. 𝑡.

෍

𝑗=1

𝑛

𝑎𝑖𝑗𝑥𝑗 ≥ 𝑏𝑖

0 ≤ 𝑥𝑗 ≤ 𝑢𝑗
𝑖 = 1… .𝑚 ; 𝑗 = 1… . 𝑛



Gas market models
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Name Author Type Region MP Nodes
Time 

Scale

Time 

resolution
Seasons Dynamics

NEMS EIA U.S. LP North America no 15 2030 1 year 2 yes

ICF GMM ICF Int. NLP US no 114
several 

years
monthly 12 no

WGM Egging MCP World yes 41 2030 5 years 2 yes

FRISBEE
Statistics 

Norway
PE World no 13 2030 1 year 1 yes

COLUMBUS
Hecking and 

Panke, EWI
MCP World yes - 2050 monthly(?) 12(2) yes

GASMOD
Holz, DIW 

Berlin
MCP Europe yes 6 2025 10 years 1 yes

GASTALE
Lise and 

Hobbs
MCP Europe yes 19 2030 5 years 3 yes

TIGER
Lochner et al., 

EWI
LP Europe no - 2020 monthly 12 yes

NATGAS
Zwart and 

Mulder
MCP Europe yes - 2035 5 years 2 yes

- BTU LSEW
MCP

NLP

Europe

World
yes > 80 2030

Monthly

Quarterly

Yearly

12 yes



0000               

Thank you!
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Gas market models
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Model architecture: schematic overview
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Types of optimization problems
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InfraTrain 2014 – One and Two-level Energy Market Equilibrium Modelling, 

Daniel Huppmann



MCP / Method of Lagrange multipliers: problem definition

55BTU Cottbus  – Chair of Energy Economics

In mathematical optimization, the method of Lagrange multipliers is a

strategy for finding the local maxima and minima of a function subject to

equality constraints:

𝑚𝑎𝑥 𝑓(𝑥, 𝑦)

𝑠. 𝑡. 𝑔 𝑥, 𝑦 = 𝑐

Where  f(x,y) – objective function

g(x,y) - constraint



MCP / Method of Lagrange multipliers
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In mathematical optimization, the method of Lagrange multipliers is a

strategy for finding the local maxima and minima of a function subject to

equality constraints:

𝑚𝑎𝑥 𝑓(𝑥, 𝑦)

𝑠. 𝑡. 𝑔 𝑥, 𝑦 = 𝑐

Key point: 2 curves are tangent at the same point ->

i.e. they have the same slope



MCP / Method of Lagrange multipliers
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In mathematical optimization, the method of Lagrange multipliers is a

strategy for finding the local maxima and minima of a function subject to

equality constraints:

𝑚𝑎𝑥 𝑓(𝑥, 𝑦)

𝑠. 𝑡. 𝑔 𝑥, 𝑦 = 𝑐

Gradient of the function shows the direction of the 

max increase of the function:

𝛻𝑓 𝑥, 𝑦 =
𝜕𝑓

𝜕𝑥
,
𝜕𝑓

𝜕𝑦

𝛻𝑔 𝑥, 𝑦 =
𝜕𝑔

𝜕𝑥
,
𝜕𝑔

𝜕𝑦



MCP / Method of Lagrange multipliers: Gradient
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In mathematics, the gradient is a generalization of the usual concept of

derivative of a function in one dimension to a function in several dimensions.

✓ Gradient points in the direction of the greatest rate of increase of the function 

and its magnitude is the slope of the graph in that direction

where the ei are the orthogonal unit 

vectors pointing in the coordinate 

directions.



MCP / Method of Lagrange multipliers
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In mathematical optimization, the method of Lagrange multipliers is a

strategy for finding the local maxima and minima of a function subject to

equality constraints:

𝑚𝑎𝑥 𝑓(𝑥, 𝑦)

𝑠. 𝑡. 𝑔 𝑥, 𝑦 = 𝑐

If 2 vectors are orthogonal to the same slope, it has 

to be the case that they are parallel:

𝛻𝑓 𝑥, 𝑦 = λ ∙ 𝛻𝑔 𝑥, 𝑦



MCP / Method of Lagrange multipliers: economical 

interpretation
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✓ In economics the optimal profit to a player is calculated subject to a

constrained space of actions, where a Lagrange multiplier is the change

in the optimal value of the objective function (profit) due to the relaxation

of a given constraint

𝛻𝑓 𝑥, 𝑦 = λ ∙ 𝛻𝑔 𝑥, 𝑦

𝜕𝐿 𝑥, 𝑦

𝜕𝑔 𝑥, 𝑦
= λ

in such a context λ is the marginal cost of

the constraint, and is referred as the

shadow price


