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Motivation
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 Gas- and electricity markets are linked:

– Gas price patterns have a significant impact on the competitiveness of gas-

fired power technologies

– European policy focus on emission reduction and renewable energies in

turn affects power sector demand development

– Gas and coal cost levels drive investment substitution effects

 Nonetheless, most quantitative models (and studies) of European energy markets

focus on single energy sectors, such as electricity OR gas.
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Integration approaches
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2) “Soft-linked” models

3) “Hard-linked” models

4) Integrated models

1) Separated models



4

Uncertainty of gas demand
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German / European gas demand uncertainty in 2 charts:

Source: Prognos AG (2017) based on (Cedigaz, 2015), (EC, 2016b), (E3M, 2014),

(ENTSOG, 2015a), ENTSOG (2016c), (Greenpeace, 2015), (IEA, 2015), IEA (2016), (Statoil,

2016), (ExxonMobil, 2016), (IHS, 2016)
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Research focus

Research focus general:

- Evaluate economic impacts of uncertainty drivers on the integrated energy system
(including the feedback effects across the gas and electricity markets)

More specific focus for this presentation:

- Evaluate effects of uncertain gas demand on electricity generation investments

Brandenburg University of Technology – Chair of Energy Economics



Model structure
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Implementing uncertainty
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We represent uncertain gas

demand from non-electricity

sectors by a discrete realization

probabilities (two-stage scenario

tree)

The model simultaneously minimizes the total expected costs of both the electricity

and gas sectors.

The ‘stochastic solution’ defines the optimal endogenous capacity extension plan

(that has to hold for all scenarios), as well as scenario-dependent optimal dispatch

decisions.
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Cumulative investments in power generation capacities until 
2030
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I. Majority of investments into gas-fired technologies

II. Overall, amount of investments into gas-fired technologies decrease in the stochastic solution
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Gas price differences as a driver for changes in optimal investment 
decisions  
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I. Majority of investments into gas-fired technologies

II. Overall, amount of investments into gas-fired technologies decrease in the stochastic solution

III. Overall, amount of investments into lignite and hard coal increase in the stochastic solution

IV. Reallocation of power generation investments 
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Results
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Value of stochastic solution (VSS)

or expected cost of ignoring uncertainty (ECIU)

I. Define one scenario as the ‘naïve’ scenario that is

assumed to occur in the future;

II. ‘Naïve’ scenario is solved with a probability of 1;

III. The vector of investment decisions is imposed into

the stochastic model;

IV. The VSS is calculated as:

Total costs
Expected costs of 

ignoring uncertainty

Stochastic € 247,078 M 

Stochastic* € 247,143 M 

VSS € 65 M 

VSS (% of total costs) 0.026%

𝑉𝑆𝑆 = 𝑓inv 𝑑𝑒𝑡𝑒𝑟𝑚
𝑠𝑡𝑜𝑐ℎ − 𝑓𝑠𝑡𝑜𝑐ℎ

A. H. van der Weijde and B. F. Hobbs, “The economics of

planning electricity transmission to accommodate renewables:

Using two-stage optimisation to evaluate flexibility and the cost of

disregarding uncertainty”, 2012

Uncertainty: economic, technologic, and regulatory drivers

System: electricity market of GB

VSS (%) = 0.08%

M. Fodstad et. al., “Stochastic Modeling of Natural Gas

Infrastructure Development in Europe under Demand

Uncertainty”, 2016

Uncertainty: gas demand

System: natural gas market for Europe (+ rest of the world on

highly aggregated level)

VSS (%) < 0.01%
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Results
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Expected value of perfect information (EVPI)

I. Solve each scenario separately as a deterministic

model;

II. EVPI is the difference between the expected costs

of the stochastic solution and the probability-

weighted average of the scenarios’ deterministic

costs:

Total costs
Saving resulting from a 

perfect information

Stochastic € 247,078 M 

Deterministic

Scenario 1 (Low dem) € 223,432 M € 23,646 M 

Scenario 2 (Ref dem) € 245,533 M € 1,545 M 

Scenario 3 (High dem) € 271,125 M -€ 24,047 M

EVPI € 381 M 

EVPI (%) 0.154%

𝑉𝑆𝑆 = 𝑓𝑠𝑡𝑜𝑐ℎ −෍

𝑠

𝜌𝑠 ∙ 𝑓𝑠
𝑑𝑒𝑡𝑒𝑟𝑚

A. H. van der Weijde and B. F. Hobbs, “The economics of

planning electricity transmission to accommodate renewables:

Using two-stage optimisation to evaluate flexibility and the cost of

disregarding uncertainty”, 2012

Uncertainty: economic, technologic, and regulatory drivers

System: electricity market of GB

EVPI (%) = 3.02%

M. Fodstad et. al., “Stochastic Modeling of Natural Gas

Infrastructure Development in Europe under Demand

Uncertainty”, 2016

Uncertainty: gas demand

System: natural gas market for Europe (+ rest of the world on

highly aggregated level)

EVPI (%) = 0.012%
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Conclusions
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▪ We develop an integrated stochastic model considering both gas and electricity

sectors

▪ We focus on effects of gas demand uncertainty on the integrated system

▪ We observe (i) an overall decrease and (ii) a reallocation of investments in gas-fired

technologies.

▪ We quantify and compare the VSS and EVPI metrics. The findings support the

hypothesis that the economic impact of uncertainty should be evaluated using an

integrated modelling approach.

▪ Further research should be conducted to fully understand the impact of different

uncertainty drivers on all the planning decisions across the integrated energy system.



Iegor Riepin 
Chair of energy economics

Brandenburg University of Technology 
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