

legor Riepin, Tom Brown **iegor.riepin@tu-berlin.de** || Technical University of Berlin

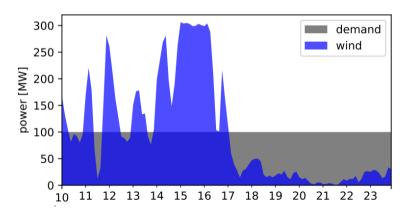
RGI Civil Society Training Series Balancing Connections: Introduction to flexibility in a renewables-based energy system Online, 6 December 2024

Send us an email: iegor.riepin@tu-berlin.de, t.brown@tu-berlin.de This work is licensed under a CC BY 4.0.

Buying more than just energy

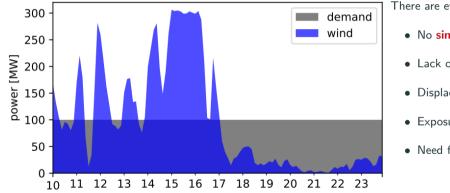
Technische Universität Berlin

RE100


- Many companies claim to be "powered by clean energy". The meaning of these claims, however, varies greatly
- Some companies procure "unbundled certificates", such as Guarantees of Origin to **indicate sustainability** credentials
- Many buyers recognise limitations of the unbundled certificates and turn towards Power Purchase Agreements (PPAs)

More than **400 companies** worldwide have pledged to match their electricity demand with renewable electricity on an **annual basis**

Great, so what's the problem? 1/2



- Temporal mismatch: 100% RES PPAs result in periods of oversupply and deficit.
- Hours of deficit must be met by rest of system – grid supply may have high emissions and high prices
- Extended period of supply deficit is expensive to bridge with battery storage.

Great, so what's the problem? 2/2

There are even more challenges:

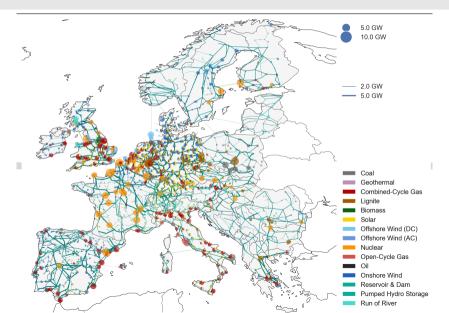
- No simultaneity
- Lack of additionality
- Displaced location
- Exposure to market risk
- Need for **backup**

24/7 carbon-free energy

- There is growing interest in voluntary clean electricity procurement to cover consumption with clean energy supply on a **hourly basis**.
- Achieving 24/7 Carbon-Free Energy (CFE) means that every kilowatt-hour of electricity consumption is met with carbon-free electricity sources, round-the-clock.
- 24/7 CFE matching principles necessarily require additionality and geographical matching of renewable generation.

The 24/7 Carbon-free Energy Compact

initiative was launched in 2021. Now: 167 members.


We want to find out:

- How can we achieve hourly clean energy matching?
- What is the cost premium of 24/7 CFE?
- Can long-duration storage or new dispatchable clean technologies help?
- If many companies take a 24/7 approach, how does this effect the rest of the system?
- What role can demand flexibility play for 24/7 CFE?

Looking at this problem through the lens of energy modelling

Energy modelling world

6

PyPSA(-Eur) toolbox

- PyPSA (Python for Power System Analysis) is an open source toolbox for for state-of-the-art energy system modelling
- PyPSA development and maintenance is coordinated by TU Berlin, Department of Energy Systems
- The tools used worldwide by research institutes, NGOs and private sector Our <u>list of users</u>.

A python software toolbox for simulating and optimising modern power systems.

Documentation »

Atlite

A Lightweight Python Package for Calculating Renewable Power Potentials and Time Series

PvPSA-Eur

A Sector-Coupled Open Optimisation Model of the European Energy System

Documentation »

Powerplantmatching

A toolset for cleaning, standardizing and combining multiple power plant databases.

Documentation »

Linopy

Linear optimization interface for N-D labeled variables.

Documentation »

Model Energy

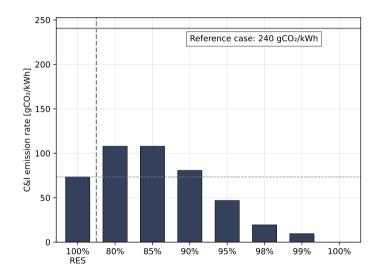
An online toolkit for calculating renewable electricity supplies.

24/7 CFE: clean generation capacity procurement, costs and system impacts

Scenario setup: "System-level impacts of 24/7 CFE procurement in Europe" (2022)

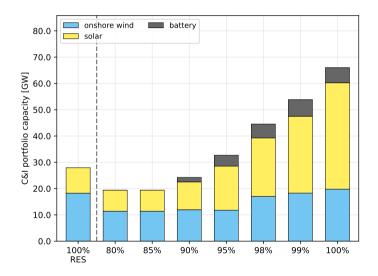
 Offshore Wind (AC) _____ 5 GW Offshore Wind (DC) _____ 10 GW _____ 10 GW 00001 Onshore Wind Run of River Solar Nuclear 50 40

Technology


_i0

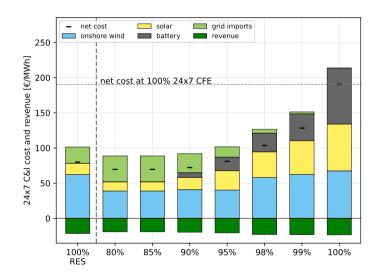
- We model the European power system with capacity expansion for the years 2025 & 2030
- Consumers following 24/7 approach can be located in one of the four zones: Ireland, Denmark (zone DK1), Germany and the Netherlands
- A set of constraints to model a situation when a fraction of corporate and industry (C&I) demand in a selected zone commits to 24/7 CFE (i.e. C&I have an aggregated demand profile)
- Study: doi.org/10.5281/zenodo.7180098
- Paper: doi.org/10.1016/j.esr.2024.101488

Average emissions of procured electricity



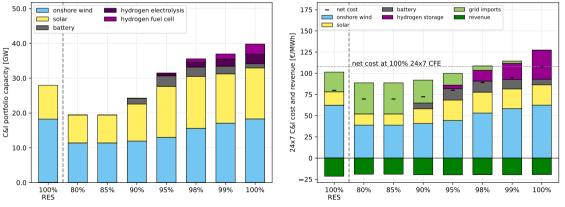
- Procurement affects **average emissions rate** of used electricity
- Reference system has average emissions rate at 240 kgCO₂/MWh
- 100% annual RES reduces rate to 73 kgCO₂/MWh
- As CFE target tightens, emissions drop to zero

Portfolio of procured capacity



- 100% RES for 10% of C&I demand (3.8 GW load) is met with 28 GW of onshore wind and solar
- Above 90% CFE batteries enter the mix
- With only wind, solar and batteries, a large portfolio is needed to bridge dark wind lulls (*Dunkelflauten*)

24/7 CFE cost breakdown



- The cost breakdown shows the average costs of meeting demand with the policy, including grid electricity consumption costs netted by revenue selling to the grid
- There is only a small cost premium going to 90-95% CFE matching
- But the last 2% of hourly CFE matching more than doubles the cost

Including long-duration storage (LDES)

Adding long-duration energy storage (LDES) to the mix (represented here by hydrogen storage in salt caverns at $2.5 \in /kWh$) reduces the portfolio size for 100% CFE and limits the cost premium to 50% over annual RES matching.

Germany - Palette 2 - 2025 - 10% - baseload

12

What role can demand flexibility play for 24/7 CFE?

ICT companies work demand flexibility concepts and technical solutions

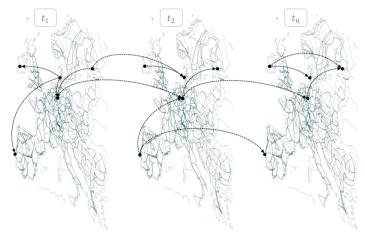
DATA CENTERS AND INFRASTRUCTURE

Our data centers now work harder when the sun shines and wind blows

Addressing the challenge of climate change demands a transformation in how the world produces and uses energy Goode has been carbon neutral since 2007 and 2019 marks the third year in a row that we've matched our energy usage with 100 percent renewable energy purchases. Now we're working toward 24x7 carbon-free energy everywhere we have data centers, which deliver our products to billions of people around the world. To achieve 24x7 carbon-free energy our data centers need to work more closely with carbon-free energy sources like solar and wind.

SUSTAINABILITY

We now do more computing where there's cleaner energy



Co-founder, Carbon-Intelligent Computing

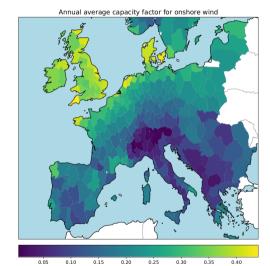
Study: The value of space-time load-shifting flexibility for 24/7 carbon-free electricity procurement (July 2023)

• Key focuses:

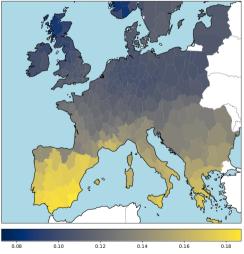
- How can demand flexibility reduce the required resources and costs of 24/7 CFE matching?

- What are the **signals** for optimal utilisation of demand flexibility?

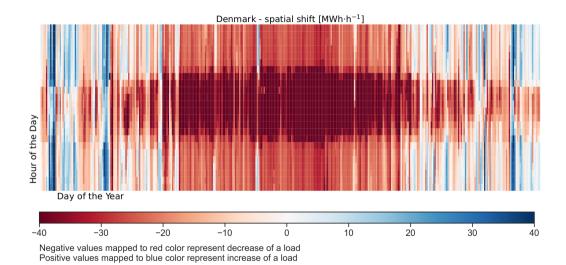
– What are the trade-offs and synergies from co-optimisation of spatial and temporal load shifting?


- Open-access study:
 - study: zenodo.org/records/8185850

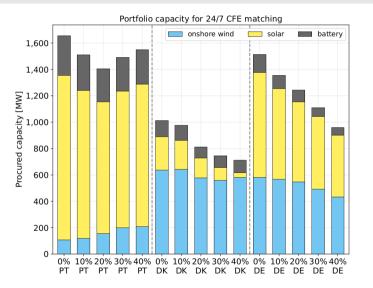
 code: github.com/PyPSA/247-cfe
- Follow-up research paper: "Spatio-temporal load shifting for truly clean computing"
 - study: arxiv.org/abs/2405.00036


 code: ../space-time-optimization

Quality of local renewable resouces



Time-series of optimized spatial load shifts (locations: PT-DK-DE)

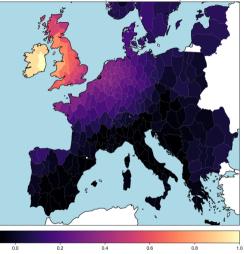


16

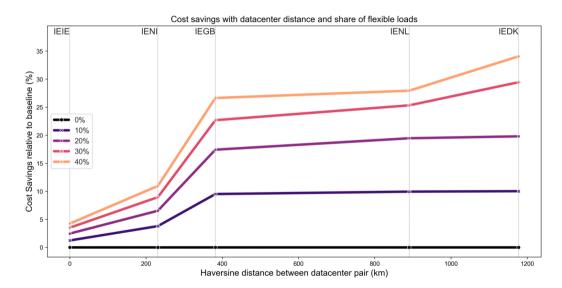
Procurement as a function of load flexibility (locations: PT-DK-DE)

- Optimal procurement strategies to match 100 MW load with 24/7 CFE displayed per datacenter location and share of flexible loads {0% ... 40%}
- The required portfolio capacity is significantly reduced when load shifting becomes possible
- Demand flexibility facilitates the efficiency and affordability of 24/7 CFE matching

Scenario: 24/7 CFE with 100% score, commercially available technologies, 2025 DEA technology cost assumptions**17** co-optimised spatial & temporal load shifts


Low correlation of wind power generation over long distances

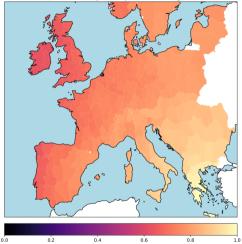
Wind correlation (Pearson's r) falloff with distance data: onshore wind hourly capacity factor; base region: DK1



Wind correlation (Pearson's r) falloff with distance data: onshore wind hourly capacity factor; base region: IE5

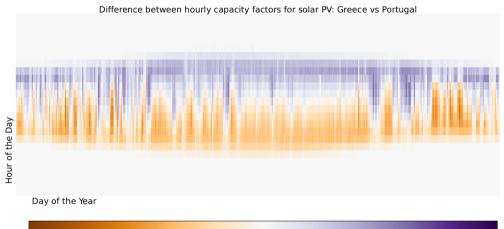
Cost savings as a function of distance between datacenter pair

Time lag in solar radiation peaks due to Earth's rotation (1/2)

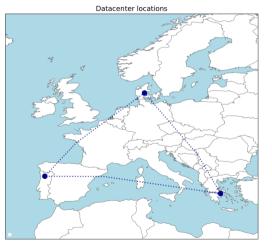


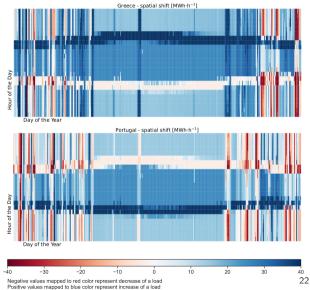
data: solar PV hourly capacity factor; base region: PT1 67

Wind correlation (Pearson's r) falloff with distance


Wind correlation (Pearson's r) falloff with distance data: solar PV hourly capacity factor; base region: GR1

Time lag in solar radiation peaks due to Earth's rotation (2/2)


-1.00



Time-series of optimized spatial load shifts (locations: DK-PT-GR)

Takeaways and resources

24/7 CFE resources:

- European 24/7 CFE Hub: https://247.eurelectric.org/
- EnergyTag: https://energytag.org/
- Climate Group 24/7 Coalition: https://www.theclimategroup.org/support-247

Check out Princeton University Zero Lab's great work on 24/7 CFE: https://acee.princeton.edu/24-7/

Hourly matching research for hydrogen:

Temporal regulation of renewable supply for electrolytic hydrogen by Elisabeth Zeyen et al, 2024, Environ. Res. Lett. 19, 024034

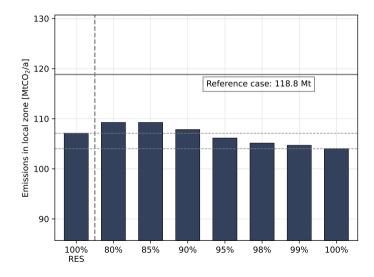
Learn more about our project:

Webpage: https://irieo.github.io/247cfe.github.io/

Code: This project—each study, paper and slide deck—is done in a spirit of open and reproducible research

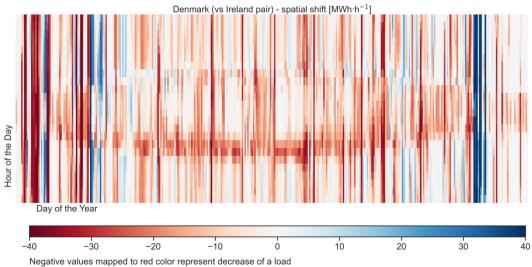
Annex

How is 24/7 carbon-free electricity (CFE) measured?


Electricity in an hour is counted as **carbon-free (CFE)** if:

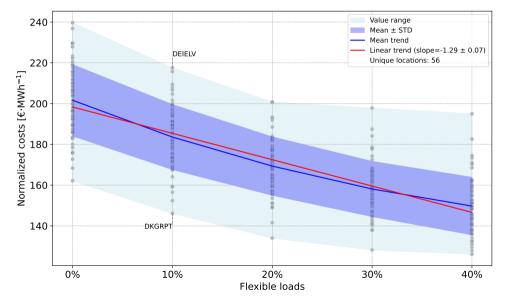
- Directly contracted carbon-free assets are generating (generation above company demand is ignored)
- Energy consumed from the grid is carbon-free (counted according to mix in local bidding zone and any imports)

CFE fraction in each hour is averaged to CFE score for year.


System emissions are also reduced (power sector values for Germany)

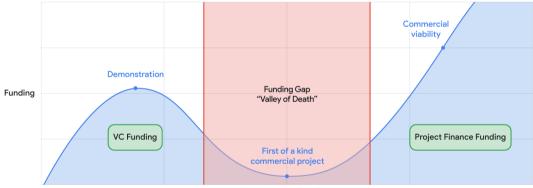
- CO₂ emissions in the local bidding zone are also reduced by CFE procurement
- If 10% of C&I follows 24/7, total system emission are reduced further compared to 100% RES
- Two effects are responsible:
 volume effect of more CFE with high targets; profile effect of the timing of feed-in at highly-emitting times

Time-series of optimized spatial load shifts (locations: DK-IE)



Positive values mapped to blue color represent increase of a load

Results can be generalized beyond specific load locations

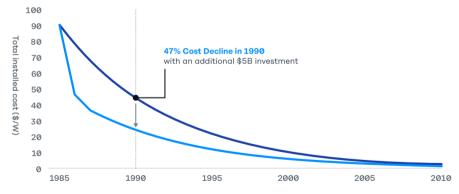


- Scenarios for **co-optimised** and **isolated** utilisation of space-time load-shifting;
- Scenarios for 24/7 CFE with 98% and 100% matching targets;
- Scenarios with different 24/7 technology options (e.g., Long Duration Energy Storage);
- 24/7 CFE cost breakdowns and procurement strategies for individual locations;
- Synergies and trade-offs between spatial and temporal load shifting;
- Analysis of net load migration across locations;
- Simulated **energy balances** for selected datacenters.

Barriers to advanced clean technology commercialization

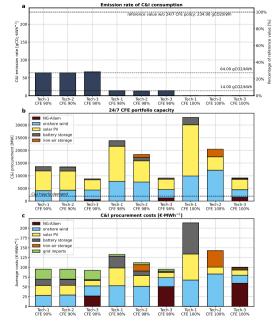
Development Timeline

Illustration: Google (2023)29 see also Prime Coalition (2022) study


Another perspective

Earlier, Larger-Scale Investments in Solar Would Have Brought Costs Down Sooner.

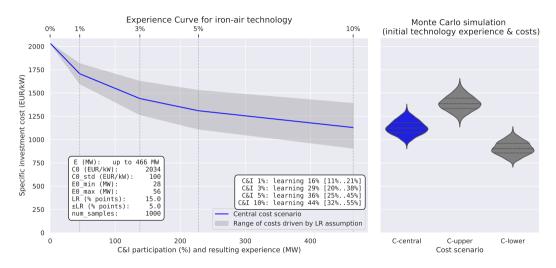
 Estimated cost decline if we funded \$5B of projects between 1985 and 1990



Source: Breakthrough Energy analysis; data from MIT and IRENA

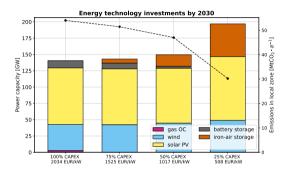
Illustration: B. Gates (2021),30 see also: https://www.howsolargotcheap.com/

- Key focuses:
 - What role can 24/7 CFE play in accelerating advanced clean electricity technologies?
 - How can 24/7 CFE procurement facilitate technology learning?
 - What are the associated system decarbonization effects?
- Open research:
 - Study to be released soon: 247cfe.github.io/
 - Code: github.com/PyPSA/247-cfe

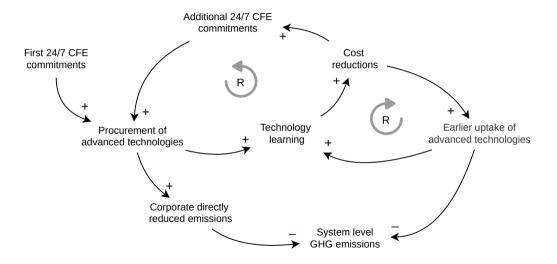


- With only wind, solar and batteries, a large portfolio is needed to bridge dark wind lulls (*Dunkelflauten*)
- This makes the last 2% of hourly CFE matching to come with a high cost premium
- Adding LDES to the mix (here: iron-air battery) or clean firm generation technology (here: NG-Allam plant) reduces the portfolio size and limits the cost premium
- Procurement affects average emissions rate of used electricity. Background grid (here: Germany 2025) has 234 gCO₂/kWh. As CFE target tightens, emissions of 24/7 CFE participants drop to zero

Scenario: Germany 2025 5% of C&I demand (1900 MW) follow 24/7 CFE 24/7 CFE with 90%, 98% 100% score p1 commercially available technologies p2 above plus Clean firm generator p3 above plus Clean firm generator


Impact of 24/7 CFE procurement on technology learning

Impact of technology learning on background energy system



- Iron-air battery storage breaks even into technology investment mix with 25% CAPEX reduction (basis level: \$2300/kW)
- System-level emissions drop: iron-air storage substitutes fossil-based peakers, and allows for efficient use of renewable excess energy
- For this effect, announced capacity of iron-air battery has to be doubled twice¹ with $LR \approx 0.15$ ¹56.5 MW / 5.65 GWh is planned by 2025
- ca. EUR 0.35B investment required to bring iron-air technology for economical break-even (an estimate based on LR, initial experience & costs, background system assumptions)

Scenario: Germany 2030 Varying CAPEX of iron-air battery**34** no C&I demand

"Virtuous circle" kickstarted by first 24/7 CFE commitments

